Back to Search Start Over

Ultrafast X-ray Diffraction Thermometry Measures the Influence of Spin Excitations on the Heat Transport through nanolayers

Authors :
Matthias Reinhardt
Flavio Zamponi
A. Koc
A. von Reppert
Wolfram Leitenberger
Peter Gaal
Matias Bargheer
M. Rössle
Karine Dumesnil
Institute for Methods and Instrumentation for Synchrotron Radiation Research
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB)
Universität Potsdam
Institut Jean Lamour (IJL)
Université de Lorraine (UL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)
Université de Hambourg
IMPACT N4S
ANR-15-IDEX-0004,LUE,Isite LUE(2015)
Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Physical Review B: Condensed Matter (1978-1997), Physical Review B: Condensed Matter (1978-1997), American Physical Society, 2017, 96 (1), pp.014306. ⟨10.1103/PhysRevB.96.014306⟩
Publication Year :
2017

Abstract

International audience; We investigate the heat transport through a rare earth multilayer system composed of yttrium (Y), dysprosium (Dy), and niobium (Nb) by ultrafast x-ray diffraction. This is an example of a complex heat flow problem on the nanoscale, where several different quasiparticles carry the heat and conserve a nonequilibrium for more than 10 ns. The Bragg peak positions of each layer represent layer-specific thermometers that measure the energy flow through the sample after excitation of the Y top layer with fs-laser pulses. In an experiment-based analytic solution to the nonequilibrium heat transport problem, we derive the individual contributions of the spins and the coupled electron-lattice system to the heat conduction. The full characterization of the spatiotemporal energy flow at different starting temperatures reveals that the spin excitations of antiferromagnetic Dy speed up the heat transport into the Dy layer at low temperatures, whereas the heat transport through this layer and further into the Y and Nb layers underneath is slowed down. The experimental findings are compared to the solution of the heat equation using macroscopic temperature-dependent material parameters without separation of spin and phonon contributions to the heat. We explain why the simulated energy density matches our experiment-based derivation of the heat transport, although the simulated thermoelastic strain in this simulation is not even in qualitative agreement.

Details

Language :
English
ISSN :
01631829
Database :
OpenAIRE
Journal :
Physical Review B: Condensed Matter (1978-1997), Physical Review B: Condensed Matter (1978-1997), American Physical Society, 2017, 96 (1), pp.014306. ⟨10.1103/PhysRevB.96.014306⟩
Accession number :
edsair.doi.dedup.....45eff80f47faea2d1a0121415ed5fdf0