Back to Search Start Over

Exposure to environmentally relevant concentrations of ambient fine particulate matter (PM2.5) depletes the ovarian follicle reserve and causes sex-dependent cardiovascular changes in apolipoprotein E null mice

Authors :
Ulrike Luderer
Jinhwan Lim
Laura Ortiz
Johnny D. Nguyen
Joyce H. Shin
Barrett D. Allen
Lisa S. Liao
Kelli Malott
Veronique Perraud
Lisa M. Wingen
Rebecca J. Arechavala
Bishop Bliss
David A. Herman
Michael T. Kleinman
Source :
Particle and fibre toxicology, vol 19, iss 1, Particle and Fibre Toxicology, Vol 19, Iss 1, Pp 1-21 (2022)
Publication Year :
2022
Publisher :
eScholarship, University of California, 2022.

Abstract

Background Fine particulate matter (PM2.5) exposure accelerates atherosclerosis and contains known ovotoxic chemicals. However, effects of exposure to PM2.5 on the finite ovarian follicle pool have hardly been investigated, nor have interactions between ovarian and cardiovascular effects. We hypothesized that subchronic inhalation exposure to human-relevant concentrations of PM2.5 results in destruction of ovarian follicles via apoptosis induction, as well as accelerated recruitment of primordial follicles into the growing pool. Further, we hypothesized that destruction of ovarian follicles enhances the adverse cardiovascular effects of PM2.5 in females. Results Hyperlipidemic apolipoprotein E (Apoe) null ovary-intact or ovariectomized female mice and testis-intact male mice were exposed to concentrated ambient PM2.5 or filtered air for 12 weeks, 5 days/week for 4 h/day using a versatile aerosol concentration enrichment system. Primordial, primary, and secondary ovarian follicle numbers were decreased by 45%, 40%, and 17%, respectively, in PM2.5-exposed ovary-intact mice compared to controls (P 2.5-exposed females versus controls (P 2.5 increased the percentages of primary and secondary follicles with DNA damage, assessed by γH2AX immunostaining (P 2.5 increased the percentages of apoptotic antral follicles, determined by TUNEL and activated caspase 3 immunostaining (P 2.5-exposure exacerbated the atherosclerotic effects of hyperlipidemia in females (P 2.5-compared to Air-exposed gonad-intact males and females and ovariectomized females, the changes were not consistent between exposure years and assessment methods. Conclusions These results demonstrate that subchronic PM2.5 exposure depletes the ovarian reserve by increasing recruitment of primordial follicles into the growing pool and increasing apoptosis of growing follicles. Further, PM2.5 exposure and removal of the ovaries each increase atherosclerosis progression in Apoe-/- females. Premature loss of ovarian function is associated with increased risk of osteoporosis, cardiovascular disease and Alzheimer’s disease in women. Our results thus support possible links between PM2.5 exposure and other adverse health outcomes in women.

Details

Database :
OpenAIRE
Journal :
Particle and fibre toxicology, vol 19, iss 1, Particle and Fibre Toxicology, Vol 19, Iss 1, Pp 1-21 (2022)
Accession number :
edsair.doi.dedup.....45d5924c22f555707c9d1e08f80aea53