Back to Search Start Over

A biochemically-interpretable machine learning classifier for microbial GWAS

Authors :
Laurence Yang
David Heckmann
Jonathan M. Monk
Erol Kavvas
Bernhard O. Palsson
Source :
Nature Communications, Vol 11, Iss 1, Pp 1-11 (2020), Nature communications, vol 11, iss 1, Nature Communications
Publication Year :
2020
Publisher :
Nature Publishing Group, 2020.

Abstract

Current machine learning classifiers have successfully been applied to whole-genome sequencing data to identify genetic determinants of antimicrobial resistance (AMR), but they lack causal interpretation. Here we present a metabolic model-based machine learning classifier, named Metabolic Allele Classifier (MAC), that uses flux balance analysis to estimate the biochemical effects of alleles. We apply the MAC to a dataset of 1595 drug-tested Mycobacterium tuberculosis strains and show that MACs predict AMR phenotypes with accuracy on par with mechanism-agnostic machine learning models (isoniazid AUC = 0.93) while enabling a biochemical interpretation of the genotype-phenotype map. Interpretation of MACs for three antibiotics (pyrazinamide, para-aminosalicylic acid, and isoniazid) recapitulates known AMR mechanisms and suggest a biochemical basis for how the identified alleles cause AMR. Extending flux balance analysis to identify accurate sequence classifiers thus contributes mechanistic insights to GWAS, a field thus far dominated by mechanism-agnostic results.<br />Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical effects of alleles.

Details

Language :
English
ISSN :
20411723
Volume :
11
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....4595ef1d3d0e5085e604fef93bfc4a1d