Back to Search Start Over

Image segmentation using local probabilistic atlases coupled with topological information

Authors :
Jean-Yves Ramel
Gaetan Galisot
Elodie Chaillou
Thierry Brouard
Laboratoire d'Informatique Fondamentale et Appliquée de Tours (LIFAT)
Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Physiologie de la reproduction et des comportements [Nouzilly] (PRC)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut Français du Cheval et de l'Equitation [Saumur]-Institut National de la Recherche Agronomique (INRA)
Centre National de la Recherche Scientifique (CNRS)-Université de Tours-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
Institut National de la Recherche Agronomique (INRA)-Institut Français du Cheval et de l'Equitation [Saumur]-Université de Tours-Centre National de la Recherche Scientifique (CNRS)
galisot, gaetan
Laboratoire d'Informatique
Université de Dschang
APR Centre Val de Loire NeuroGéo
Institut National de la Recherche Agronomique (INRA)-Institut Français du Cheval et de l'Equitation [Saumur]-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS)
Université de Tours (UT)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Source :
VISAPP 2018, VISAPP 2018, Feb 2017, Porto, France, Scopus-Elsevier, International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Feb 2017, Porto, Portugal. SciTePress, 4, 2017, ⟨10.5220/0006130605010508⟩, International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Feb 2017, Porto, Portugal. SciTePress, 4, 2017, 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. ⟨10.5220/0006130605010508⟩, HAL, VISIGRAPP (4: VISAPP)
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

Atlas-based segmentation is a widely used method for Magnetic Resonance Imaging (MRI) segmentation. It is also a very efficient method for the automatic segmentation of brain structures. In this paper, we propose a more adaptive and interactive atlas-based method. The proposed model allows to combine several local probabilistic atlases with a topological graph. Local atlases can provide more precise information about the structure’s shape and the spatial relationships between each of these atlases are learned and stored inside a graph representation. In this way, local registrations need less computational time and image segmentation can be guided by the user in an incremental way. Pixel classification is achieved with the help of a hidden Markov random field that is able to integrate the a priori information with the intensities coming from different modalities. The proposed method was tested on the OASIS dataset, used in the MICCAI’12 challenge for multi-atlas labeling.

Details

Language :
English
Database :
OpenAIRE
Journal :
VISAPP 2018, VISAPP 2018, Feb 2017, Porto, France, Scopus-Elsevier, International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Feb 2017, Porto, Portugal. SciTePress, 4, 2017, ⟨10.5220/0006130605010508⟩, International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Feb 2017, Porto, Portugal. SciTePress, 4, 2017, 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. ⟨10.5220/0006130605010508⟩, HAL, VISIGRAPP (4: VISAPP)
Accession number :
edsair.doi.dedup.....453cdb7838851ab09a704e63913f847a
Full Text :
https://doi.org/10.5220/0006130605010508⟩