Back to Search Start Over

The Atmospheric River Tracking Method Intercomparison Project (ARTMIP): Quantifying Uncertainties in Atmospheric River Climatology

Authors :
Allison B. Marquardt Collow
Jonathan J. Rutz
Gary A. Wick
Christine A. Shields
Karthik Kashinath
Anna Wilson
Alexandre M. Ramos
Michael Wehner
Tamara Shulgina
Harinarayan Krishnan
Naomi Goldenson
Scott Sellars
Elizabeth McClenny
Swen Brands
Daniel Walton
Maximiliano Viale
Ashley E. Payne
Prabhat
Vitaliy Kurlin
Irina Gorodetskaya
Grzegorz Muszynski
Travis A. O'Brien
Helen Griffith
David A. Lavers
Duane E. Waliser
Gudrun Magnusdottir
Paul A. Ullrich
Kelly Mahoney
Chandan Sarangi
Ricardo Tomé
Bin Guan
Juan M. Lora
Brian Kawzenuk
Phu Nguyen
Yun Qian
F. Martin Ralph
L. Ruby Leung
Source :
Journal of Geophysical Research: Atmospheres
Publication Year :
2019
Publisher :
American Geophysical Union (AGU), 2019.

Abstract

Author(s): Rutz, JJ; Shields, CA; Lora, JM; Payne, AE; Guan, B; Ullrich, P; O’Brien, T; Leung, LR; Ralph, FM; Wehner, M; Brands, S; Collow, A; Goldenson, N; Gorodetskaya, I; Griffith, H; Kashinath, K; Kawzenuk, B; Krishnan, H; Kurlin, V; Lavers, D; Magnusdottir, G; Mahoney, K; McClenny, E; Muszynski, G; Nguyen, PD; Prabhat, M; Qian, Y; Ramos, AM; Sarangi, C; Sellars, S; Shulgina, T; Tome, R; Waliser, D; Walton, D; Wick, G; Wilson, AM; Viale, M | Abstract: Atmospheric rivers (ARs) are now widely known for their association with high-impact weather events and long-term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key AR-related metrics based on 20+ different AR identification and tracking methods applied to Modern-Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteria-based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an all-method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and AR-related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting AR-related research to consider.

Details

ISSN :
21698996 and 2169897X
Volume :
124
Database :
OpenAIRE
Journal :
Journal of Geophysical Research: Atmospheres
Accession number :
edsair.doi.dedup.....44f63e339a03c6051276b8f2009c2af7
Full Text :
https://doi.org/10.1029/2019jd030936