Back to Search Start Over

Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite

Authors :
Feng Zhu
Chuan Zhang
Xiaolu Gong
Laboratoire des Systèmes Mécaniques et d'Ingénierie Simultanée (LASMIS)
Institut Charles Delaunay (ICD)
Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
Effi-SiEMCE
Source :
Applied Thermal Engineering, Applied Thermal Engineering, 2016, 109, pp.373-383. ⟨10.1016/j.applthermaleng.2016.08.088⟩, Applied Thermal Engineering, Elsevier, 2016, 109, pp.373-383. ⟨10.1016/j.applthermaleng.2016.08.088⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; Three methods to further enhance thermal performance of the metal foam/phase change material (PCM) composite are investigated and compared. These three methods include changing the pores per inch (PPI) of metal foam, modifying the shape of the cold wall and using the discrete heat sources. In this study, the composite consists of two materials: aluminum foam with 90% porosity as metal foam and paraffin wax as PCM. The numerical model based on finite volume method is developed, and the non-equilibrium equation is applied to study the melting process of the paraffin embedded in aluminum foam. The heat loss, the liquid average velocity and the efficiency of latent heat storage are analyzed and discussed. The results show that adopting the aluminum foam with high PPI value or modifying the shape of the cold wall could improve the thermal response of composite. Besides, the discrete heat sources could lead to a large average velocity in the liquid region. Combining the advantages of these methods, an optimization method is also proposed, which could improve the efficiency to 83.32% comparing with the pure paraffin.

Details

Language :
English
ISSN :
13594311
Database :
OpenAIRE
Journal :
Applied Thermal Engineering, Applied Thermal Engineering, 2016, 109, pp.373-383. ⟨10.1016/j.applthermaleng.2016.08.088⟩, Applied Thermal Engineering, Elsevier, 2016, 109, pp.373-383. ⟨10.1016/j.applthermaleng.2016.08.088⟩
Accession number :
edsair.doi.dedup.....44e8bdc6dd6ecfda9309748de8a400a2