Back to Search Start Over

The grape remote sensing atmospheric profile and evapotranspiration experiment

Authors :
Lynn McKee
Maria Mar Alsina
Adam M. Howard
Alfonso F. Torres-Rua
William P. Kustas
L. Sanchez
Christopher Hain
William A. White
Lawrence E. Hipps
Feng Gao
Josh Heitman
Kyle Knipper
Scott B. Jones
John H. Prueger
Joseph G. Alfieri
Kirk Post
Yun Yang
Mac McKee
Hector Nieto
Brent Sams
T. G. Wilson
Fangni Lei
Andrew J. McElrone
Forrest Melton
Nurit Agam
Sebastian A. Los
Christopher K. Parry
Martha C. Anderson
Nick Dokoozlian
Producció Vegetal
Ús Eficient de l'Aigua en Agricultura
American Meteorological Society
Source :
IRTA Pubpro. Open Digital Archive, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), AggieAir Publications, Bull Am Meteorol Soc
Publication Year :
2018
Publisher :
American Meteorological Society, 2018.

Abstract

Particularly in light of California’s recent multiyear drought, there is a critical need for accurate and timely evapotranspiration (ET) and crop stress information to ensure long-term sustainability of high-value crops. Providing this information requires the development of tools applicable across the continuum from subfield scales to improve water management within individual fields up to watershed and regional scales to assess water resources at county and state levels. High-value perennial crops (vineyards and orchards) are major water users, and growers will need better tools to improve water-use efficiency to remain economically viable and sustainable during periods of prolonged drought. To develop these tools, government, university, and industry partners are evaluating a multiscale remote sensing–based modeling system for application over vineyards. During the 2013–17 growing seasons, the Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX) project has collected micrometeorological and biophysical data within adjacent pinot noir vineyards in the Central Valley of California. Additionally, each year ground, airborne, and satellite remote sensing data were collected during intensive observation periods (IOPs) representing different vine phenological stages. An overview of the measurements and some initial results regarding the impact of vine canopy architecture on modeling ET and plant stress are presented here. Refinements to the ET modeling system based on GRAPEX are being implemented initially at the field scale for validation and then will be integrated into the regional modeling toolkit for large area assessment.

Details

Database :
OpenAIRE
Journal :
IRTA Pubpro. Open Digital Archive, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), AggieAir Publications, Bull Am Meteorol Soc
Accession number :
edsair.doi.dedup.....44e3ddad618ba743019d7181611233dc