Back to Search Start Over

Concerted motions and large-scale structural fluctuations of Trichoderma reesei Cel7A cellobiohydrolase

Authors :
Rodrigo Lanna Franco da Silveira
Munir S. Skaf
Source :
Physical Chemistry Chemical Physics. 20:7498-7507
Publication Year :
2018
Publisher :
Royal Society of Chemistry (RSC), 2018.

Abstract

Cellobiohydrolases (CBHs) are key enzymes for the saccharification of cellulose and play major roles in industrial settings for biofuel production. The catalytic core domain of these enzymes exhibits a long and narrow binding tunnel capable of binding glucan chains from crystalline cellulose and processively hydrolyze them. The binding cleft is topped by a set of loops, which are believed to play key roles in substrate binding and cleavage processivity. Here, we present an analysis of the loop motions of the Trichoderma reesei Cel7A catalytic core domain (TrCel7A) using conventional and accelerated molecular dynamics simulations. We observe that the loops exhibit highly coupled fluctuations and cannot move independently of each other. In the absence of a substrate, the characteristic large amplitude dynamics of TrCel7A consists of breathing motions, where the loops undergo open-and-close fluctuations. Upon substrate binding, the open-close fluctuations of the loops are quenched and one of the loops moves parallel to the binding site, possibly to allow processive motion along the glucan chain. Using microsecond accelerated molecular dynamics, we observe large-scale fluctuations of the loops (up to 37 Å) and the entire exposure of the TrCel7A binding site in the absence of the substrate, resembling an endoglucanase. These results suggest that the initial CBH-substrate contact and substrate recognition by the enzyme are similar to that of endoglucanases and, once bound to the substrate, the loops remain closed for proper enzymatic activity.

Details

ISSN :
14639084 and 14639076
Volume :
20
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics
Accession number :
edsair.doi.dedup.....44d4b08a1386c3df821e9c105452da77
Full Text :
https://doi.org/10.1039/c8cp00101d