Back to Search
Start Over
Gene Transfer in Adeno-Associated Virus Seropositive Rhesus Macaques Following Rapamycin Treatment and Subcutaneous Delivery of AAV6, but Not Retargeted AAV6 Vectors
- Source :
- Hum Gene Ther
- Publication Year :
- 2021
- Publisher :
- Mary Ann Liebert Inc, 2021.
-
Abstract
- Adeno-associated virus (AAV) vectors such as AAV6, which shows tropism for primary human CD4(+) T cells in vitro, are being explored for delivery of anti-HIV therapeutic modalities in vivo. However, pre-existing immunity and sequestration in nontarget organs can significantly hinder their performance. To overcome these challenges, we investigated whether immunosuppression would allow gene delivery by AAV6 or targeted AAV6 derivatives in seropositive rhesus macaques. Animals were immune suppressed with rapamycin before intravenous (IV) or subcutaneous (SC) delivery of AAV, and we monitored vector biodistribution, gene transfer, and safety. Macaques received phosphate-buffered saline, AAV6 alone, or an equal dose of AAV6 and an AAV6-55.2 vector retargeted to CD4 through a direct ankyrin repeat protein (DARPin). AAV6 and AAV6-55.2 vector genomes were found in peripheral blood mononuclear cells and most organs up to 28 days postadministration, with the highest levels seen in liver, spleen, lymph nodes (LNs), and muscle, suggesting that retargeting did not prevent vector sequestration. Despite vector genome detection, gene expression from AAV6-55.2 was not detected in any tissue. SC injection of AAV6 facilitated efficient gene expression in muscle adjacent to the injection site, plus low-level gene expression in spleen, LNs, and liver, whereas gene expression following IV injection of AAV6 was predominantly seen in the spleen. AAV vectors were well tolerated, although elevated liver enzymes were detected in three of four AAV-treated animals 14 days after rapamycin withdrawal. One SC-injected animal had muscle inflammation proximal to the injection site, plus detectable T cell responses against transgene and AAV6 capsid at study finish. Overall, our data suggest that rapamycin treatment may offer a possible strategy to express anti-HIV therapeutics such as broadly neutralizing antibodies from muscle. This study provides important safety and efficacy data that will aid study design for future anti-HIV gene therapies.
- Subjects :
- T cell
Genetic Vectors
Spleen
Pharmacology
Gene delivery
medicine.disease_cause
03 medical and health sciences
0302 clinical medicine
Immune system
Gene expression
Genetics
medicine
Animals
Humans
Designed Ankyrin Repeat Proteins
Tissue Distribution
Vector (molecular biology)
Molecular Biology
Adeno-associated virus
Research Articles
030304 developmental biology
Sirolimus
0303 health sciences
biology
business.industry
Dependovirus
Macaca mulatta
medicine.anatomical_structure
030220 oncology & carcinogenesis
Leukocytes, Mononuclear
biology.protein
Molecular Medicine
Antibody
business
Subjects
Details
- ISSN :
- 15577422 and 10430342
- Volume :
- 32
- Database :
- OpenAIRE
- Journal :
- Human Gene Therapy
- Accession number :
- edsair.doi.dedup.....44a98e17c5b03af849d2087446f475e1
- Full Text :
- https://doi.org/10.1089/hum.2020.113