Back to Search Start Over

Interaction design guidelines on critiquing-based recommender systems

Authors :
Li Chen
Pearl Pu
Publication Year :
2018

Abstract

A critiquing-based recommender system acts like an artificial salesperson. It engages users in a conversational dialog where users can provide feedback in the form of critiques to the sample items that were shown to them. The feedback, in turn, enables the system to refine its understanding of the user's preferences and prediction of what the user truly wants. The system is then able to recommend products that may better stimulate the user's interest in the next interaction cycle. In this paper, we report our extensive investigation of comparing various approaches in devising critiquing opportunities designed in these recommender systems. More specifically, we have investigated two major design elements which are necessary for a critiquing-based recommender system: critiquing coverage--one vs. multiple items that are returned during each recommendation cycle to be critiqued; and critiquing aid--system-suggested critiques (i.e., a set of critique suggestions for users to select) vs. user-initiated critiquing facility (i.e., facilitating users to create critiques on their own). Through a series of three user trials, we have measured how real-users reacted to systems with varied setups of the two elements. In particular, it was found that giving users the choice of critiquing one of multiple items (as opposed to just one) has significantly positive impacts on increasing users' decision accuracy (particularly in the first recommendation cycle) and saving their objective effort (in the later critiquing cycles). As for critiquing aids, the hybrid design with both system-suggested critiques and user-initiated critiquing support exhibits the best performance in inspiring users' decision confidence and increasing their intention to return, in comparison with the uncombined exclusive approaches. Therefore, the results from our studies shed light on the design guidelines for determining the sweetspot balancing user initiative and system support in the development of an effective and user-centric critiquing-based recommender system.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....448f4f180fd068cb7568280016209fb5