Back to Search Start Over

Dependence of Field Switched Ordered Arrays of Dinuclear Mixed-Valence Complexes on the Distance between the Redox Centers and the Size of the Counterions

Authors :
Gregory L. Snider
Bruce C. Noll
Yuhui Lu
Craig S. Lent
Anuradha Gupta
Thomas P. Fehlner
Hua Qi
Source :
Journal of the American Chemical Society. 127:15218-15227
Publication Year :
2005
Publisher :
American Chemical Society (ACS), 2005.

Abstract

trans-[(H(2)NCH(2)CH(2)C triple bond N)(dppe)(2)Ru(C triple bond C)(6)Ru(dppe)(2)(N triple bond CCH(2)CH(2)NH(2))][PF(6)](2), 2[PF(6)](2), a derivative of trans-[Cl(dppe)(2)Ru(C triple bond C)(6)Ru(dppe)(2)Cl] functionalized for binding to a silicon substrate, has been prepared and characterized spectroscopically, electrochemically, and with a solid state, single-crystal structure determination. Covalent binding via reaction of one amine group to a boron-doped, smooth Si-Cl substrate is verified by XPS measurements and surface electrochemistry. Vertical orientation is demonstrated by film thickness measurements. Synthesis of the 2[PF(6)](3) mixed-valence complex on the surface is established by electrochemical techniques. Measurement of the ac capacitance of the film at 1 MHz as a function of voltage across the film with a pulse-counter pulse technique demonstrates controlled electric field generation of the two stable mixed-valence forms differing in the spatial location of one electron, that is, switching. As compared to [trans-Ru(dppm)(2)(C triple bond CFc)(NCCH(2)CH(2)NH(2))][PF(6)][Cl], 1[PF(6)][Cl], the magnitude of the capacitance signal per complex observed on switching is shown to increase with increasing distance between the metal centers. Additional experiments on 1[X][Cl] show that the potential for switching 1[X][Cl] increases in the order [X](-) = [SO(3)CF(3)](-) < [PF(6)](-) < [Cl](-). A simple electrostatic model suggests that the smaller is the counterion, the greater is the perturbation of the metal sites and the larger is the barrier for switching.

Details

ISSN :
15205126 and 00027863
Volume :
127
Database :
OpenAIRE
Journal :
Journal of the American Chemical Society
Accession number :
edsair.doi.dedup.....448b9436d73dbf05ed4c6509015c65af
Full Text :
https://doi.org/10.1021/ja054508j