Back to Search Start Over

Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy

Authors :
Markus G. Manz
Simon F. Norrelykke
Gábor Székely
Patrick M. Helbling
César Nombela-Arrieta
Anton S. Becker
Alvaro Gomariz
Ute Suessbier
Takashi Nagasawa
Andreas Boss
Gregory Paul
Orcun Goksel
Stephan Isringhausen
Szymon Stoma
University of Zurich
Nombela-Arrieta, César
Source :
Nature Communications, Nature Communications, Vol 9, Iss 1, Pp 1-15 (2018), Nature Communications, 9 (1)
Publication Year :
2017

Abstract

Sinusoidal endothelial cells and mesenchymal CXCL12-abundant reticular cells are principal bone marrow stromal components, which critically modulate haematopoiesis at various levels, including haematopoietic stem cell maintenance. These stromal subsets are thought to be scarce and function via highly specific interactions in anatomically confined niches. Yet, knowledge on their abundance, global distribution and spatial associations remains limited. Using three-dimensional quantitative microscopy we show that sinusoidal endothelial and mesenchymal reticular subsets are remarkably more abundant than estimated by conventional flow cytometry. Moreover, both cell types assemble in topologically complex networks, associate to extracellular matrix and pervade marrow tissues. Through spatial statistical methods we challenge previous models and demonstrate that even in the absence of major specific interaction forces, virtually all tissue-resident cells are invariably in physical contact with, or close proximity to, mesenchymal reticular and sinusoidal endothelial cells. We further show that basic structural features of these stromal components are preserved during ageing.<br />Nature Communications, 9 (1)<br />ISSN:2041-1723

Details

ISSN :
20411723
Volume :
9
Issue :
1
Database :
OpenAIRE
Journal :
Nature communications
Accession number :
edsair.doi.dedup.....443d33f9a68f792ace625b6d704172b5