Back to Search
Start Over
Duality and Serre functor in homotopy categories
- Source :
- Communications in Algebra
- Publication Year :
- 2017
-
Abstract
- For a (right and left) coherent ring $A$, we show that there exists a duality between homotopy categories ${\mathbb{K}}^{{\rm{b}}}({\rm mod}{\mbox{-}}A^{{\rm op}})$ and ${\mathbb{K}}^{{\rm{b}}}({\rm mod}{\mbox{-}}A)$. If $A=\Lambda$ is an artin algebra of finite global dimension, this duality restricts to a duality between their subcategories of acyclic complexes, ${\mathbb{K}}^{{\rm{b}}}_{\rm ac}({\rm mod}{\mbox{-}}\Lambda^{\rm op})$ and ${\mathbb{K}}^{{\rm{b}}}_{\rm ac}({\rm mod}{\mbox{-}}\Lambda).$ As a result, it will be shown that, in this case, ${\mathbb{K}}_{\rm ac}^{{\rm{b}}}({\rm mod}{\mbox{-}}\Lambda)$ admits a Serre functor and hence has Auslander-Reiten triangles.<br />Comment: arXiv admin note: text overlap with arXiv:1605.04745
- Subjects :
- Serre spectral sequence
Discrete mathematics
Fiber functor
Pure mathematics
Algebra and Number Theory
Functor
Brown's representability theorem
010102 general mathematics
High Energy Physics::Phenomenology
Duality (optimization)
Serre duality
01 natural sciences
Mathematics::Category Theory
18E30, 16E35, 18G25
0103 physical sciences
Natural transformation
FOS: Mathematics
010307 mathematical physics
Representation Theory (math.RT)
0101 mathematics
Exact functor
Mathematics - Representation Theory
Mathematics
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Communications in Algebra
- Accession number :
- edsair.doi.dedup.....441bba0327224fee9414ecfcc800a682