Back to Search Start Over

Duality and Serre functor in homotopy categories

Authors :
Javad Asadollahi
N. Asadollahi
Razieh Vahed
Rasool Hafezi
Source :
Communications in Algebra
Publication Year :
2017

Abstract

For a (right and left) coherent ring $A$, we show that there exists a duality between homotopy categories ${\mathbb{K}}^{{\rm{b}}}({\rm mod}{\mbox{-}}A^{{\rm op}})$ and ${\mathbb{K}}^{{\rm{b}}}({\rm mod}{\mbox{-}}A)$. If $A=\Lambda$ is an artin algebra of finite global dimension, this duality restricts to a duality between their subcategories of acyclic complexes, ${\mathbb{K}}^{{\rm{b}}}_{\rm ac}({\rm mod}{\mbox{-}}\Lambda^{\rm op})$ and ${\mathbb{K}}^{{\rm{b}}}_{\rm ac}({\rm mod}{\mbox{-}}\Lambda).$ As a result, it will be shown that, in this case, ${\mathbb{K}}_{\rm ac}^{{\rm{b}}}({\rm mod}{\mbox{-}}\Lambda)$ admits a Serre functor and hence has Auslander-Reiten triangles.<br />Comment: arXiv admin note: text overlap with arXiv:1605.04745

Details

Language :
English
Database :
OpenAIRE
Journal :
Communications in Algebra
Accession number :
edsair.doi.dedup.....441bba0327224fee9414ecfcc800a682