Back to Search Start Over

Improving the discriminability of standard subjective quality assessment methods: a case study

Authors :
Jing Li
Patrick Le Callet
Laboratoire des Sciences du Numérique de Nantes (LS2N)
IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)
Image Perception Interaction (IPI)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Source :
Tenth International Conference on Quality of Multimedia Experience (QoMEX), Tenth International Conference on Quality of Multimedia Experience (QoMEX), 2018, cagliari, Italy, QoMEX
Publication Year :
2018
Publisher :
HAL CCSD, 2018.

Abstract

Subjective assessment for image or video qualities is considered as the most reliable way to obtain the ground truth for the development of objective quality metrics, especially when leaded by Mean Opinion Score (MOS approaches). However, obtained MOS with standard protocols are noisy due to subject's personal characteristics, such as viewing experience, gender or profession, leading to uncertain ground truth driven by the number of panelists/subjects. The usual way to reduce uncertainty relies on raising this number. In this paper, we demonstrate how a recently introduced Maximum Likelihood Estimation (MLE) based quality recovery model can improve the discriminability of standard subjective quality assessment. Compared to straightforward MOS computation, we present a case study where one can save between 26% to 39% in terms of numbers of subjects at the same discriminability.

Details

Language :
English
Database :
OpenAIRE
Journal :
Tenth International Conference on Quality of Multimedia Experience (QoMEX), Tenth International Conference on Quality of Multimedia Experience (QoMEX), 2018, cagliari, Italy, QoMEX
Accession number :
edsair.doi.dedup.....43c845a5db800fd1acfb12bda2243efc