Back to Search
Start Over
Discrete integrable systems and Poisson algebras from cluster maps
- Publication Year :
- 2014
- Publisher :
- Springer, 2014.
-
Abstract
- We consider nonlinear recurrences generated from cluster mutations applied to quivers that have the property of being cluster mutation-periodic with period 1. Such quivers were completely classified by Fordy and Marsh, who characterised them in terms of the skew-symmetric matrix that defines the quiver. The associated nonlinear recurrences are equivalent to birational maps, and we explain how these maps can be endowed with an invariant Poisson bracket and/or presymplectic structure. Upon applying the algebraic entropy test, we are led to a series of conjectures which imply that the entropy of the cluster maps can be determined from their tropical analogues, which leads to a sharp classification result. Only four special families of these maps should have zero entropy. These families are examined in detail, with many explicit examples given, and we show how they lead to discrete dynamics that is integrable in the Liouville-Arnold sense.<br />Comment: 49 pages, 3 figures. Reduced to satisfy journal page restrictions. Sections 2.4, 4.5, 6.3, 7 and 8 removed. All other results remain, with minor editing
- Subjects :
- Pure mathematics
Integrable system
Nonlinear Sciences - Exactly Solvable and Integrable Systems
Quiver
Complex system
FOS: Physical sciences
Statistical and Nonlinear Physics
Mathematical Physics (math-ph)
Poisson distribution
QC20
Poisson bracket
Nonlinear system
symbols.namesake
QA150
Mathematics - Quantum Algebra
symbols
FOS: Mathematics
17B63, 37K10, 37P05
Quantum Algebra (math.QA)
Algebraic number
Invariant (mathematics)
Exactly Solvable and Integrable Systems (nlin.SI)
Mathematical Physics
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 00103616
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....436bd9abd47ca8669ecd5aaac55741a4