Back to Search Start Over

Microalgae identification: Future of image processing and digital algorithm

Authors :
Jun Wei Roy Chong
Kuan Shiong Khoo
Kit Wayne Chew
Dai-Viet N. Vo
Deepanraj Balakrishnan
Fawzi Banat
Heli Siti Halimatul Munawaroh
Koji Iwamoto
Pau Loke Show
Source :
Bioresource Technology. 369:128418
Publication Year :
2023
Publisher :
Elsevier BV, 2023.

Abstract

The identification of microalgae species is an important tool in scientific research and commercial application to prevent harmful algae blooms (HABs) and recognizing potential microalgae strains for the bioaccumulation of valuable bioactive ingredients. The aim of this study is to incorporate rapid, high-accuracy, reliable, low-cost, simple, and state-of-the-art identification methods. Thus, increasing the possibility for the development of potential recognition applications, that could identify toxic-producing and valuable microalgae strains. Recently, deep learning (DL) has brought the study of microalgae species identification to a much higher depth of efficiency and accuracy. In doing so, this review paper emphasizes the significance of microalgae identification, and various forms of machine learning algorithms for image classification, followed by image pre-processing techniques, feature extraction, and selection for further classification accuracy. Future prospects over the challenges and improvements of potential DL classification model development, application in microalgae recognition, and image capturing technologies are discussed accordingly.

Details

ISSN :
09608524
Volume :
369
Database :
OpenAIRE
Journal :
Bioresource Technology
Accession number :
edsair.doi.dedup.....43319b4c40d639c1deb6528480a2b0c1
Full Text :
https://doi.org/10.1016/j.biortech.2022.128418