Back to Search Start Over

Effect of dietary lipids and other nutrients on milk odd- and branched-chain fatty acid composition in dairy ewes

Authors :
Rachel Gervais
Pilar Frutos
Gonzalo Hervás
A. Della Badia
Pablo G. Toral
Frutos, Pilar [0000-0002-4919-5094]
Agencia Estatal de Investigación (España)
Ministerio de Ciencia e Innovación (España)
European Commission
Ministerio de Economía y Competitividad (España)
Toral, Pablo G. [0000-0002-1913-7707]
Hervás, Gonzalo [0000-0002-0013-7459]
Frutos, Pilar
Toral, Pablo G.
Hervás, Gonzalo
Source :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Publication Year :
2020
Publisher :
American Dairy Science Association, 2020.

Abstract

11 páginas, 4 tablas, 1 figura.<br />Milk odd- and branched-chain fatty acids (OBCFA) are largely derived from bacteria leaving the rumen, which has encouraged research on their use as biomarkers of rumen function. Targeted research has examined relationships between these fatty acids (FA) and dietary components, but interactions between the effects of lipids and other nutrients on milk OBCFA are not well characterized yet. Furthermore, factors controlling milk OBCFA in sheep are largely unknown. Thus, the present meta-analysis examined relationships between diet composition and milk OBCFA using a database compiled with lot observations from 14 trials in dairy ewes fed lipid supplements. A total of 47 lots received lipid supplements, whereas their respective controls (27 lots) were fed the same basal diets without lipid supplementation. Relationships between milk OBCFA and dietary components were first assessed through a principal component analysis (PCA) and a correlation analysis. Then, responses of milk OBCFA to variations in specific dietary components (selected on the basis of the PCA) were examined in more detail by regression analysis. According to the loading plot, dietary unsaturated C18 FA loaded opposite to major milk OBCFA (e.g., 15:0, 15:0 anteiso, and 17:0) and were strongly correlated with principal component 1, which described 46% of variability. Overall, regression equations supported this negative, and generally linear, relationship between unsaturated C18 FA levels and milk OBCFA. However, the influence of C20–22 n-3 polyunsaturated FA and saturated FA was more limited. The PCA also suggested that dietary crude protein is not a determinant of milk OBCFA profile in dairy ewes, but significant relationships were observed between some OBCFA and dietary fiber or starch, consistent with a potential role of these FA as biomarkers of rumen cellulolytic and amylolytic bacteria. In this regard, regression equations indicated that iso FA would show opposite responses to increasing levels of acid detergent fiber (positive linear coefficients) and starch (negative linear coefficients). Lipid supplementation would not largely affect these associations, supporting the potential of OBCFA as noninvasive markers of rumen function under different feeding conditions (i.e., with or without lipid supplementation). Because consumption of these FA may have nutritional benefits for humans, the use of high-fiber/low-starch rations might be recommended to maintain the highest possible content of milk OBCFA in dairy sheep.<br />This work was supported by the Spanish Research State Agency (Agencia Estatal de Investigación) and the European Regional Development Fund (project AGL2017-87812-R, AEI/FEDER, UE). P. G. Toral benefited from a Ramón y Cajal research contract (RYC-2015-17230) and A. Della Badia from a FPI predoctoral contract (PRE2018-086174), from the Spanish Ministries of Economy and Competitiveness (MINECO) and Science and Innovation (MICINN), respectively. Co-funding by the European Social Fund is also acknowledged. The authors thank M.-P. Létour-neau-Montminy (Université Laval, Québec, Canada) for helpful assistance with statistical analysis. The authors have not stated any conflicts of interest.

Details

Database :
OpenAIRE
Journal :
Digital.CSIC. Repositorio Institucional del CSIC, instname
Accession number :
edsair.doi.dedup.....42fa47d5f7260e672742f921dda556dd