Back to Search Start Over

Efficient energy transport in an organic semiconductor mediated by transient exciton delocalization

Authors :
Kai Chen
Zahra Andaji-Garmaroudi
Suryoday Prodhan
Thomas J. A. Slater
Linjun Wang
J. Diego Garcia-Hernandez
Alexander J. Sneyd
Jooyoung Sung
Sean M. Collins
Ian Manners
Isabella Wagner
Liam R. MacFarlane
Yifan Zhang
Tomoya Fukui
David Paleček
George R. Whittell
David Beljonne
Richard H. Friend
Akshay Rao
Justin M. Hodgkiss
Sneyd, Alexander J [0000-0002-4205-0554]
Fukui, Tomoya [0000-0003-3339-1178]
Wagner, Isabella [0000-0001-5009-2407]
Zhang, Yifan [0000-0003-1298-5436]
Sung, Jooyoung [0000-0003-2573-6412]
Collins, Sean M [0000-0002-5151-6360]
Slater, Thomas JA [0000-0003-0372-1551]
MacFarlane, Liam R [0000-0002-4196-3431]
Garcia-Hernandez, J Diego [0000-0001-6343-5659]
Wang, Linjun [0000-0002-6169-7687]
Whittell, George R [0000-0001-8559-0166]
Hodgkiss, Justin M [0000-0002-9629-8213]
Beljonne, David [0000-0001-5082-9990]
Manners, Ian [0000-0002-3794-967X]
Friend, Richard H [0000-0001-6565-6308]
Rao, Akshay [0000-0003-4261-0766]
Apollo - University of Cambridge Repository
Slater, Thomas J A [0000-0003-0372-1551]
Source :
Science Advances
Publication Year :
2021
Publisher :
American Association for the Advancement of Science (AAAS), 2021.

Abstract

Precisely tuning an organic semiconductor’s crystalline order allows exciton transport to proceed 2-3 orders of magnitude faster.<br />Efficient energy transport is desirable in organic semiconductor (OSC) devices. However, photogenerated excitons in OSC films mostly occupy highly localized states, limiting exciton diffusion coefficients to below ~10−2 cm2/s and diffusion lengths below ~50 nm. We use ultrafast optical microscopy and nonadiabatic molecular dynamics simulations to study well-ordered poly(3-hexylthiophene) nanofiber films prepared using living crystallization-driven self-assembly, and reveal a highly efficient energy transport regime: transient exciton delocalization, where energy exchange with vibrational modes allows excitons to temporarily re-access spatially extended states under equilibrium conditions. We show that this enables exciton diffusion constants up to 1.1 ± 0.1 cm2/s and diffusion lengths of 300 ± 50 nm. Our results reveal the dynamic interplay between localized and delocalized exciton configurations at equilibrium conditions, calling for a re-evaluation of exciton dynamics and suggesting design rules to engineer efficient energy transport in OSC device architectures not based on restrictive bulk heterojunctions.

Details

ISSN :
23752548
Database :
OpenAIRE
Journal :
Science Advances
Accession number :
edsair.doi.dedup.....42e8c4c5287a7fcc173af01d3608ade1
Full Text :
https://doi.org/10.17863/cam.74477