Back to Search Start Over

Genome-wide alteration of 5-hydroxymenthylcytosine in a mouse model of Alzheimer’s disease

Authors :
Hui Shen
Xuekun Li
Peng Jin
Qi Xu
Liqi Shu
Liping Li
Wenjia Sun
Li Lin
Pei Xie
Luoxiu Huang
Zihui Xu
Source :
BMC Genomics
Publication Year :
2016
Publisher :
Springer Science and Business Media LLC, 2016.

Abstract

Background Alzheimer’s disease (AD) is the most common form of neurodegenerative disorder that leads to a decline in cognitive function. In AD, aggregates of amyloid β peptide precede the accumulation of neurofibrillary tangles, both of which are hallmarks of the disease. The great majority (>90 %) of the AD cases are not originated from genetic defects, therefore supporting the central roles of epigenetic modifications that are acquired progressively during the life span. Strong evidences have indicated the implication of epigenetic modifications, including histone modification and DNA methylation, in AD. Recent studies revealed that 5-hydroxymethylcytosine (5hmC) is dynamically regulated during neurodevelopment and aging. Results We show that amyloid peptide 1–42 (Aβ1-42) could significantly reduce the overall level of 5hmC in vitro. We found that the level of 5hmC displayed differential response to the pathogenesis in different brain regions, including the cortex, cerebellum, and hippocampus of APP-PSEN1 double transgenic (DTg) mice. We observed a significant decrease of overall 5hmC in hippocampus, but not in cortex and cerebellum, as the DTg mice aged. Genome-wide profiling identified differential hydroxymethylation regions (DhMRs) in DTg mice, which are highly enriched in introns, exons and intergenic regions. Gene ontology analyses indicated that DhMR-associated genes are highly enriched in multiple signaling pathways involving neuronal development/differentiation and neuronal function/survival. Conclusions 5hmC-mediated epigenetic regulation could potentially be involved in the pathogenesis of AD. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2731-1) contains supplementary material, which is available to authorized users.

Details

ISSN :
14712164
Volume :
17
Database :
OpenAIRE
Journal :
BMC Genomics
Accession number :
edsair.doi.dedup.....42e8a37cc6841e68b3ab21136ab60382