Back to Search
Start Over
Leptoquarks: Neutrino masses and accelerator phenomenology
- Publication Year :
- 2007
- Publisher :
- arXiv, 2007.
-
Abstract
- Leptoquark-Higgs interactions induce mixing between leptoquark states with different chiralities once the electro-weak symmetry is broken. In such LQ models Majorana neutrino masses are generated at 1-loop order. Here we calculate the neutrino mass matrix and explore the constraints on the parameter space enforced by the assumption that LQ-loops explain current neutrino oscillation data. LQs will be produced at the LHC, if their masses are at or below the TeV scale. Since the fermionic decays of LQs are governed by the same Yukawa couplings, which are responsible for the non-trivial neutrino mass matrix, several decay branching ratios of LQ states can be predicted from measured neutrino data. Especially interesting is that large lepton flavour violating rates in muon and tau final states are expected. In addition, the model predicts that, if kinematically possible, heavier LQs decay into lighter ones plus either a standard model Higgs boson or a $Z^0/W^{\pm}$ gauge boson. Thus, experiments at the LHC might be able to exclude the LQ mechanism as explanation of neutrino data.<br />Comment: 28 pages, 10 figures
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....42c5e3c4c7872f66b13614e8bf0222d6
- Full Text :
- https://doi.org/10.48550/arxiv.0710.5699