Back to Search Start Over

Hepatic biochemical, morphological and molecular effects of feeding microalgae and poultry oils to gilthead sea bream (Sparus aurata)

Authors :
Pedro Castro
Silvia Torrecillas
María Jesús Zamorano
Marta Carvalho
Daniel Montero
Marisol Izquierdo
Source :
Aquaculture
Publication Year :
2021

Abstract

The present work investigated how the combination of poultry oil with microalgae oils, rich in eicosapentaenoic acid and docosahexaenoic acid (ED diets) or n-6 docosapentaenoic acid and n-3 docosahexaenoic acid (DD diets) modulates hepatic lipid metabolism in gilthead sea bream juveniles. Diets were tested using two different fishmeal contents (15% and 7.5%) and compared against a fish oil-based diet (CTRL) and two negative control diets based on poultry oil as lipid source (PO diets). After 74 days of feeding, sea bream fed 15% FM ED or DD diets showed similar daily growth index to those fed CTRL, while those fed PO diets caused reduced growth. Fish livers reflected the highest contents in n-3 long-chain polyunsaturated fatty acids when fed CTRL, ED or DD diets, which down-regulated fas, scd-1a, fads2, lpl and cpt1, reducing hepatic lipid accumulation and hepatocytes size. In contrast, fish fed PO diets showed the lowest deposition of n-3 long-chain polyunsaturated fatty acids and the highest oleic acid in liver, leading with the highest hepatosomatic index due to increased liver lipids. Therefore, these fish revealed a severe hepatic steatosis associated with an increased expression of lipogenesis-related genes, particularly fas, lpl and sbrep1. Furthermore, PO diets seemed to activate desaturation pathways in fish livers, reflected by the highest accumulation of fatty acids that are products from desaturases and the highest fads2 and scd-1a expressions. The reduction of the dietary fishmeal content to 7.5% lowered fish growth, although hepatic lipid metabolism seemed to be more affected by FO replacement than FM replacement. Combining microalgae with poultry oil could be an alternative lipid and essential fatty acid source to fish oil in marine fish diets.

Details

ISSN :
00448486
Database :
OpenAIRE
Journal :
Aquaculture
Accession number :
edsair.doi.dedup.....42b58e47adc88be3af7dc322542a5f9b
Full Text :
https://doi.org/10.1016/j.aquaculture.2020.736073