Back to Search
Start Over
Nonequivalent release sites govern synaptic depression
- Source :
- Proceedings of the National Academy of Sciences of the United States of America. 113(3)
- Publication Year :
- 2015
-
Abstract
- Synaptic depression is prominent among synapses, but the underlying mechanisms remain uncertain. Here, we use paired patch clamp recording to study neuromuscular transmission between the caudal primary motor neuron and target skeletal muscle in zebrafish. This synapse has an unusually low number of release sites, all with high probabilities of release in response to low-frequency stimulation. During high-frequency stimulation, the synapse undergoes short-term depression and reaches steady-state levels of transmission that sustain the swimming behavior. To determine the release parameters underlying this steady state, we applied variance analysis. Our analysis revealed two functionally distinct subclasses of release sites differing by over 60-fold in rates of vesicle reloading. A slow reloading class requires seconds to recover and contributes to depression onset but not the steady-state transmission. By contrast, a fast reloading class recovers within tens of milliseconds and is solely responsible for steady-state transmission. Thus, in contrast to most current models that assign levels of steady-state depression to vesicle availability, our findings instead assign this function to nonuniform release site kinetics. The duality of active-site properties accounts for the highly nonlinear dependence of steady-state depression levels on frequency.
- Subjects :
- 0301 basic medicine
Time Factors
Green Fluorescent Proteins
Neuromuscular transmission
Neuromuscular Junction
Stimulation
Mice, Transgenic
Biology
Synaptic vesicle
Neuromuscular junction
Synapse
03 medical and health sciences
0302 clinical medicine
Neuroplasticity
medicine
Animals
Patch clamp
Zebrafish
Probability
Motor Neurons
Multidisciplinary
Neuronal Plasticity
Reproducibility of Results
Electric Stimulation
030104 developmental biology
medicine.anatomical_structure
PNAS Plus
Synaptic plasticity
Synapses
Neuroscience
030217 neurology & neurosurgery
Subjects
Details
- ISSN :
- 10916490
- Volume :
- 113
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Accession number :
- edsair.doi.dedup.....42a203c12f80a2f2dc265ec923d93d89