Back to Search
Start Over
Machine Learning to Predict Mortality and Critical Events in COVID-19 Positive New York City Patients
- Publication Year :
- 2020
- Publisher :
- Cold Spring Harbor Laboratory, 2020.
-
Abstract
- Coronavirus 2019 (COVID-19), caused by the SARS-CoV-2 virus, has become the deadliest pandemic in modern history, reaching nearly every country worldwide and overwhelming healthcare institutions. As of April 20, there have been more than 2.4 million confirmed cases with over 160,000 deaths. Extreme case surges coupled with challenges in forecasting the clinical course of affected patients have necessitated thoughtful resource allocation and early identification of high-risk patients. However, effective methods for achieving this are lacking. In this paper, we use electronic health records from over 3,055 New York City confirmed COVID-19 positive patients across five hospitals in the Mount Sinai Health System and present a decision tree-based machine learning model for predicting in-hospital mortality and critical events. This model is first trained on patients from a single hospital and then externally validated on patients from four other hospitals. We achieve strong performance, notably predicting mortality at 1 week with an AUC-ROC of 0.84. Finally, we establish model interpretability by calculating SHAP scores to identify decisive features, including age, inflammatory markers (procalcitonin and LDH), and coagulation parameters (PT, PTT, D-Dimer). To our knowledge, this is one of the first models with external validation to both predict outcomes in COVID-19 patients with strong validation performance and identify key contributors in outcome prediction that may assist clinicians in making effective patient management decisions.One-Sentence SummaryWe identify clinical features that robustly predict mortality and critical events in a large cohort of COVID-19 positive patients in New York City.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....42a052788fabfac7506a78b9ce81e5a0
- Full Text :
- https://doi.org/10.1101/2020.04.26.20073411