Back to Search Start Over

Preventing the Increase in Lysophosphatidic Acids: A New Therapeutic Target in Pulmonary Hypertension?

Authors :
Thomas Duflot
Jeremy Bellien
Fabrice Bauer
Matthieu Leuillier
Raphaël Thuillet
Vincent Richard
Guillaume Feugray
Saïda Azhar
Christophe Guignabert
Marc Humbert
Ly Tu
Déborah Groussard
Hind Messaoudi
Source :
Metabolites, Vol 11, Iss 784, p 784 (2021), Metabolites, Volume 11, Issue 11
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Cardiovascular diseases (CVD) are the leading cause of premature death and disability in humans that are closely related to lipid metabolism and signaling. This study aimed to assess whether circulating lysophospholipids (LPL), lysophosphatidic acids (LPA) and monoacylglycerols (MAG) may be considered as potential therapeutic targets in CVD. For this objective, plasma levels of 22 compounds (13 LPL, 6 LPA and 3 MAG) were monitored by liquid chromatography coupled with tandem mass spectrometry (HPLC/MS2) in different rat models of CVD, i.e., angiotensin-II-induced hypertension (HTN), ischemic chronic heart failure (CHF) and sugen/hypoxia(SuHx)-induced pulmonary hypertension (PH). On one hand, there were modest changes on the monitored compounds in HTN (LPA 16:0, 18:1 and 20:4, LPC 16:1) and CHF (LPA 16:0, LPC 18:1 and LPE 16:0 and 18:0) models compared to control rats but these changes were no longer significant after multiple testing corrections. On the other hand, PH was associated with important changes in plasma LPA with a significant increase in LPA 16:0, 18:1, 18:2, 20:4 and 22:6 species. A deleterious impact of LPA was confirmed on cultured human pulmonary smooth muscle cells (PA-SMCs) with an increase in their proliferation. Finally, plasma level of LPA(16:0) was positively associated with the increase in pulmonary artery systolic pressure in patients with cardiac dysfunction. This study demonstrates that circulating LPA may contribute to the pathophysiology of PH. Additional experiments are needed to assess whether the modulation of LPA signaling in PH may be of interest.

Details

Language :
English
ISSN :
22181989
Volume :
11
Issue :
784
Database :
OpenAIRE
Journal :
Metabolites
Accession number :
edsair.doi.dedup.....429d1021a7aceb83983778f70d5c2e2f