Back to Search Start Over

Engineering of cell membranes with a bisphosphonate-containing polymer using ATRP synthesis for bone targeting

Authors :
Collin Edington
Moncy V. Jose
Richard R. Koepsel
Jill D. Andersen
Sholpan Askarova
Hironobu Murata
Sonia D'Souza
Alan J. Russell
William P. Clafshenkel
Yuliya Yantsen
Source :
Biomaterials. 35(35)
Publication Year :
2014

Abstract

The field of polymer-based membrane engineering has expanded since we first demonstrated the reaction of N-hydroxysuccinimide ester-terminated polymers with cells and tissues almost two decades ago. One remaining obstacle, especially for conjugation of polymers to cells, has been that exquisite control over polymer structure and functionality has not been used to influence the behavior of cells. Herein, we describe a multifunctional atom transfer radical polymerization initiator and its use to synthesize water-soluble polymers that are modified with bisphosphonate side chains and then covalently bound to the surface of live cells. The polymers contained between 1.7 and 3.1 bisphosphonates per chain and were shown to bind to hydroxyapatite crystals with kinetics similar to free bisphosphonate binding. We engineered the membranes of both HL-60 cells and mesenchymal stem cells in order to impart polymer-guided bone adhesion properties on the cells. Covalent coupling of the polymer to the non-adherent HL-60 cell line or mesenchymal stem cells was non-toxic by proliferation assays and enhanced the binding of these cells to bone.

Details

ISSN :
18785905
Volume :
35
Issue :
35
Database :
OpenAIRE
Journal :
Biomaterials
Accession number :
edsair.doi.dedup.....42351a59ee5b6c5b279de74a41e3ad04