Back to Search
Start Over
On Long-Time Dynamics of the Solution of Doubly Nonlinear Equation
- Source :
- Qualitative Theory of Dynamical Systems. 15:127-155
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- The subject of this investigation is the long time behavior of the positive solutions of the following nonhomogeneous equation $$\begin{aligned} \rho \left( \left| x\right| \right) \frac{\partial \beta \left( v\right) }{\partial t}-\overset{N}{\underset{i=1}{\sum }}D_{i}(|D_{i}v|^{ \lambda -1}D_{i}v)+\rho \left( \left| x\right| \right) g\left( \beta \left( v\right) \right) +l\beta ^{1+m}\left( v\right) =f\left( x\right) \qquad \end{aligned}$$ (1) in unbounded domain \( \mathbb {R} _{+}\times \mathbb {R} ^{N},\) where the term \(g\left( s\right) \) is supposed to satisfy a condition \(g^{\prime }\left( s\right) >-l_{1}\) and \(D_{i}=\partial _{x_{i}}\) . The existence of the global attractor for the Eq. (1) in \(L^{1+\theta }\left( \mathbb {R} ^{N},\rho \right) =\left\{ v;v\rho ^{1/(1+\theta )}\in L^{1+\theta }\left( \mathbb {R} ^{N}\right) \right\} \) is proved.
- Subjects :
- Statistics::Applications
Applied Mathematics
010102 general mathematics
Mathematical analysis
Mathematics::Analysis of PDEs
Mathematics::General Topology
01 natural sciences
010101 applied mathematics
Combinatorics
Mathematics::Probability
Time dynamics
Domain (ring theory)
Discrete Mathematics and Combinatorics
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 16623592 and 15755460
- Volume :
- 15
- Database :
- OpenAIRE
- Journal :
- Qualitative Theory of Dynamical Systems
- Accession number :
- edsair.doi.dedup.....421dc57515e1d7e06ceeb7a51fa339bf
- Full Text :
- https://doi.org/10.1007/s12346-015-0153-0