Back to Search Start Over

Harnessing X-Ray Energy-Dependent Attenuation of Bismuth-Based Nanoprobes for Accurate Diagnosis of Liver Fibrosis

Authors :
Xingwu Jiang
Yanyan Liu
Xiaoshuang Wang
Wenbo Bu
Xinxin Zhao
Yan Zhou
Shaojie Zhai
Yelin Wu
Jiawen Zhang
Xianfu Meng
Zhenwei Yao
Shiman Wu
Source :
Advanced Science, Advanced Science, Vol 8, Iss 11, Pp n/a-n/a (2021)
Publication Year :
2021

Abstract

Timely detection of liver fibrosis by X‐ray computed tomography (CT) can prevent its progression to fatal liver diseases. However, it remains quite challenging because conventional CT can only identify the difference in density instead of X‐ray attenuation characteristics. Spectral CT can generate monochromatic imaging to specify X‐ray attenuation characteristics of the scanned matter. Herein, an X‐ray energy‐dependent attenuation strategy originated from bismuth (Bi)‐based nanoprobes (BiF3@PDA@HA) is proposed for the accurate diagnosis of liver fibrosis. Bi element in BiF3@PDA@HA can exhibit characteristic attenuation depending on different levels of X‐ray energy via spectral CT, and that is challenging for conventional CT. In this study, selectively accumulating BiF3@PDA@HA nanoprobes in the hepatic fibrosis areas can significantly elevate CT value for 40 Hounsfield units on 70 keV monochromatic images, successfully differentiating from healthy livers and achieving the diagnosis of liver fibrosis. Furthermore, the enhancement produced by the BiF3@PDA@HA nanoprobes in vivo increases as the monochromatic energy decreases from 70 to 40 keV, optimizing the conspicuity of the diseased areas. As a proof of concept, the strategically designed nanoprobes with energy‐dependent attenuation characteristics not only expand the scope of CT application, but also hold excellent potential for precise imaging‐based disease diagnosis.<br />A strategy of energy‐dependent attenuation based on bismuth (Bi) nanomaterials is proposed. BiF3@PDA@HA nanoprobes accumulated in fibrosis‐afflicted areas can attenuate characteristically depending on monoenergetic X‐ray, further leading to fibrotic livers conspicuous via spectral computed tomography (CT). Yet conventional CT with polyenergetic X‐ray can't distinguish liver fibrosis from healthy liver.

Details

ISSN :
21983844
Volume :
8
Issue :
11
Database :
OpenAIRE
Journal :
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Accession number :
edsair.doi.dedup.....41fee7f2f95cdf99ecdeaf31d8f322d0