Back to Search Start Over

Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms

Authors :
Miaomiao Chen
Wenjun Liu
Weican Zhou
Source :
Advances in Nonlinear Analysis, Vol 7, Iss 4, Pp 547-569 (2018)
Publication Year :
2016
Publisher :
Walter de Gruyter GmbH, 2016.

Abstract

In this paper, we consider the following Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms: { ρ 1 ⁢ φ t ⁢ t - K ⁢ ( φ x + ψ ) x = 0 , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , ∞ ) , ρ 2 ⁢ ψ t ⁢ t - b ⁢ ψ x ⁢ x + K ⁢ ( φ x + ψ ) + β ⁢ θ x = 0 , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , ∞ ) , ρ 3 ⁢ θ t ⁢ t - δ ⁢ θ x ⁢ x + γ ⁢ ψ t ⁢ t ⁢ x + ∫ 0 t g ⁢ ( t - s ) ⁢ θ x ⁢ x ⁢ ( s ) ⁢ d s + μ 1 ⁢ θ t ⁢ ( x , t ) + μ 2 ⁢ θ t ⁢ ( x , t - τ ) = 0 , ( x , t ) ∈ ( 0 , 1 ) × ( 0 , ∞ ) , \left\{\begin{aligned} &\displaystyle\rho_{1}\varphi_{tt}-K(\varphi_{x}+\psi)_% {x}=0,&&\displaystyle(x,t)\in(0,1)\times(0,\infty),\\ &\displaystyle\rho_{2}\psi_{tt}-b\psi_{xx}+K(\varphi_{x}+\psi)+\beta\theta_{x}% =0,&&\displaystyle(x,t)\in(0,1)\times(0,\infty),\\ &\displaystyle\rho_{3}\theta_{tt}-\delta\theta_{xx}+\gamma\psi_{ttx}+\int_{0}^% {t}g(t-s)\theta_{xx}(s)\,\mathrm{d}s+\mu_{1}\theta_{t}(x,t)+\mu_{2}\theta_{t}(% x,t-\tau)=0,&&\displaystyle(x,t)\in(0,1)\times(0,\infty),\end{aligned}\right. together with initial datum and boundary conditions of Dirichlet type, where g is a positive non-increasing relaxation function and μ 1 , μ 2 {\mu_{1},\mu_{2}} are positive constants. Under a hypothesis between the weight of the delay term and the weight of the friction damping term, we prove the global existence of solutions by using the Faedo–Galerkin approximations together with some energy estimates. Then, by introducing appropriate Lyapunov functionals, under the imposed constrain on the above two weights, we establish a general energy decay result from which the exponential and polynomial types of decay are only special cases.

Details

ISSN :
2191950X and 21919496
Volume :
7
Database :
OpenAIRE
Journal :
Advances in Nonlinear Analysis
Accession number :
edsair.doi.dedup.....41c478270291fc9a9529e013adb7a8e4
Full Text :
https://doi.org/10.1515/anona-2016-0085