Back to Search
Start Over
Precursor Intensity-Based Label-Free Quantification Software Tools for Proteomic and Multi-Omic Analysis within the Galaxy Platform
- Source :
- Proteomes, PROTEOMES, Proteomes, Vol 8, Iss 15, p 15 (2020)
- Publication Year :
- 2020
-
Abstract
- For mass spectrometry-based peptide and protein quantification, label-free quantification (LFQ) based on precursor mass peak (MS1) intensities is considered reliable due to its dynamic range, reproducibility, and accuracy. In LFQ workflows, protein abundance changes are inferred from peptide-level information, including microbial peptides (for metaproteomics) and peptides carrying post-translational modifications (for proteomics) and/or variant sequences (for proteogenomics). Multi-omics studies (such as proteogenomics and metaproteomics) rely on peptide detection and quantification to identify and quantify peptides that map to unique proteoforms and metaproteins. The Galaxy for proteomics (Galaxy-P) platform has proven useful for the development of accessible workflows to identify proteins in these complex multi-omic studies. However, proteomics workflows within the Galaxy platform have lacked well-tested label-free quantification tools. In this study, our main goals were to evaluate two recently published open-source LFQ tools and to implement them within the Galaxy platform, enabling their easy integration with established workflows. These two tools, moFF and FlashLFQ, were selected based on their described peptide quantification capabilities and amenability to Galaxy implementation. Through rigorous testing and communication with the tool developers, we gained insights into the software features necessary for maximizing the performance of each tool. Software features evaluated included: a) match-between-runs (MBR); b) using both Thermo .raw and HUPO standards .mzML file formats as input for improved quantification; c) use of containers and/or conda packages; d) parameters needed for analyzing large input datasets; and e) compatibility with a variety of mass spectrometry peaklist file formats , leading to optimized and validated software performance. This work 1) establishes a process for software implementation, optimization and validation within Galaxy; and 2) makes powerful new tools for LFQ available which should prove highly useful for a variety of proteomics and multi-omics applications employing the Galaxy platform.
- Subjects :
- Technology and Engineering
QUANTITATION
Computer science
Clinical Biochemistry
Quantitative proteomics
lcsh:QR1-502
Peptide
Software performance testing
Mass spectrometry
Proteomics
computer.software_genre
Biochemistry
galaxy framework
lcsh:Microbiology
label-free quantification
HIBERNATION
NORMALIZATION
03 medical and health sciences
Software
proteomics
Structural Biology
Technical Note
Molecular Biology
030304 developmental biology
chemistry.chemical_classification
0303 health sciences
business.industry
030302 biochemistry & molecular biology
Hibernation (computing)
Proteogenomics
Label-free quantification
ComputingMethodologies_PATTERNRECOGNITION
Workflow
chemistry
Metaproteomics
workflows
Data mining
PROTEOGENOMIC ANALYSIS
business
computer
Subjects
Details
- ISSN :
- 22277382
- Volume :
- 8
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- Proteomes
- Accession number :
- edsair.doi.dedup.....418dc002e601c93a247cb010d16588e3