Back to Search Start Over

Strong recursive feasibility in model predictive control of biped walking

Authors :
Thierry Fraichard
Matteo Ciocca
Pierre-Brice Wieber
Interaction située avec les objets et environnements intelligents (PERVASIVE)
Inria Grenoble - Rhône-Alpes
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire d'Informatique de Grenoble (LIG )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Modelling, Simulation, Control and Optimization of Non-Smooth Dynamical Systems (BIPOP)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Laboratoire Jean Kuntzmann (LJK )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
ANR-11-LABX-0025,PERSYVAL-lab,Systemes et Algorithmes Pervasifs au confluent des mondes physique et numérique(2011)
European Project: 645097,H2020 Pilier Industrial Leadership,H2020-ICT-2014-1,COMANOID(2015)
Source :
Humanoids, HUMANOIDS 2017-IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS 2017-IEEE-RAS International Conference on Humanoid Robots, Nov 2017, Birmingham, United Kingdom. pp.730-735, ⟨10.1109/HUMANOIDS.2017.8246953⟩
Publication Year :
2017
Publisher :
IEEE, 2017.

Abstract

International audience; Realizing a stable walking motion requires satisfying a set of constraints. Model Predictive Control (MPC) is one of few suitable methods to handle such constraints. The capacity to satisfy constraints, which is usually called feasibility, is classically guaranteed recursively. In our applications , an important aspect is that the MPC scheme has to adapt continuously to the dynamic environment of the robot (e.g. collision avoidance, physical interaction). We aim therefore at guaranteeing recursive feasibility for all possible scenarios, which is called strong recursive feasibility. Recursive feasibility is classically obtained by introducing a terminal constraint at the end of the prediction horizon. Between two standard approaches for legged robot, in our applications we favor a capturable terminal constraint. When the robot is not really planning to stop and considers actually making a new step, recursive feasibility is not guaranteed anymore. We demonstrate numerically that recursive feasibility is actually guaranteed, even when a new step is added in the prediction horizon.

Details

Database :
OpenAIRE
Journal :
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
Accession number :
edsair.doi.dedup.....4160e5dd661cde70c65b625e4efece23
Full Text :
https://doi.org/10.1109/humanoids.2017.8246953