Back to Search
Start Over
MiR-155 inhibits cell migration of human cardiomyocyte progenitor cells (hCMPCs) via targeting of MMP-16
- Source :
- Journal of Cellular and Molecular Medicine, Journal of Cellular and Molecular Medicine, 16(10), 2379-2386. Wiley-Blackwell
- Publication Year :
- 2012
-
Abstract
- Undesired cell migration after targeted cell transplantation potentially limits beneficial effects for cardiac regeneration. MicroRNAs are known to be involved in several cellular processes, including cell migration. Here, we attempt to reduce human cardiomyocyte progenitor cell (hCMPC) migration via increasing microRNA-155 (miR-155) levels, and investigate the underlying mechanism. Human cardiomyocyte progenitor cells (hCMPCs) were transfected with pre-miR-155, anti-miR-155 or control-miR (ctrl-miR), followed by scratch- and transwell- assays. These functional assays displayed that miR-155 over-expression efficiently inhibited cell migration by 38 ± 3.6% and 59 ± 3.7% respectively. Conditioned medium from miR-155 transfected cells was collected and zymography analysis showed a significant decrease in MMP-2 and MMP-9 activities. The predicted 3′-UTR of MMP-16, an activator of MMP-2 and -9, was cloned into the pMIR-REPORT vector and luciferase assays were performed. Introduction of miR-155 significantly reduced luciferase activity which could be abolished by cotransfection with anti-miR-155 or target site mutagenesis. By using MMP-16 siRNA to reduce MMP-16 levels or by using an MMP-16 blocking antibody, hCMPC migration could be blocked as well. By directly targeting MMP-16, miR-155 efficiently inhibits cell migration via a reduction in MMP-2 and -9 activities. Our study shows that miR-155 might be used to improve local retention of hCMPCs after intramyocardial delivery.
- Subjects :
- cell migration
Blotting, Western
Biology
Transfection
Cell Movement
Humans
Luciferase
Myocytes, Cardiac
Progenitor cell
Cloning, Molecular
RNA, Small Interfering
Cells, Cultured
Cell Proliferation
microRNA
Activator (genetics)
Cell growth
Stem Cells
matrix metalloproteinases
Cell migration
Matrix Metalloproteinase 16
Cell Biology
Original Articles
Molecular biology
Immunohistochemistry
Cell biology
Transplantation
MicroRNAs
Gene Expression Regulation
Matrix Metalloproteinase 9
Gene Knockdown Techniques
Molecular Medicine
Matrix Metalloproteinase 2
Stem cell
cardiomyocyte progenitor cells
Subjects
Details
- ISSN :
- 15824934 and 15821838
- Volume :
- 16
- Issue :
- 10
- Database :
- OpenAIRE
- Journal :
- Journal of cellular and molecular medicine
- Accession number :
- edsair.doi.dedup.....41246e7138e96459f54295708a8ec4e7