Back to Search Start Over

Levetiracetam does not modulate neuronal voltage-gated Na+ and T-type Ca2+ currents

Authors :
Isabelle Niespodziany
Henrik Klitgaard
Caterina Marchetti
Giorgio Bernardi
Doru Georg Margineanu
Cristina Zona
Publication Year :
2001

Abstract

This study investigated whether the mechanism of action of levetiracetam (LEV) is related to effects on neuronal voltage-gated Na+ or T-type Ca2+currents. Rat neocortical neurones in culture were subjected to the whole-cell mode of voltage clamping under experimental conditions designed to study voltage-gated Na+ current. Additionally, visually identified pyramidal neurones in the CA1 area of rat hippocampal slices were subjected to the whole-cell mode of voltage clamping under experimental conditions designed to study low-voltage-gated (T-type) Ca2+ current. LEV (10 microM-1 mM) did not modify the Na+ current amplitude and did not change (200 microM) the steady-state activation and inactivation, the time to peak, the fast kinetics of the inactivation and the recovery from the steady-state inactivation of the Na+ current. Likewise, LEV (32-100 microM) did not modify the amplitude and did not change the steady-state activation and inactivation, the time to peak, the fast kinetics of the inactivation and the recovery from the steady-state inactivation of the T-type Ca2+current. In conclusion, neuronal voltage-gated Na+ channels do not appear directly involved in the antiepileptic mechanism of action of LEV, and LEV was devoid of effect on the low-voltage-gated (T-type) Ca2+ current in hippocampal neurones.

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....4111a33dab7ce508b11a4b7285077635