Back to Search Start Over

Optimized Population Monte Carlo

Authors :
Victor Elvira
Emilie Chouzenoux
School of Mathematics - University of Edinburgh
University of Edinburgh
OPtimisation Imagerie et Santé (OPIS)
Centre de vision numérique (CVN)
CentraleSupélec-Université Paris-Saclay-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Institut National de Recherche en Informatique et en Automatique (Inria)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)
ANR-17-CE40-0031,PISCES,Méthodes d'échantillonnage d'importance adaptatives pour l'inférence Bayésienne dans les systèmes complexes(2017)
ANR-17-CE40-0004,MajIC,Algorithmes de Majoration-Minimisation pour le traitement d'images(2017)
European Project: ERC-2019-STG-850925,MAJORIS
Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de vision numérique (CVN)
Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-CentraleSupélec-Université Paris-Saclay
European Project: ERC-2019-STG-850925,MAJORIS(2020)
Source :
IEEE Transactions on Signal Processing, IEEE Transactions on Signal Processing, 2022, 70, pp.2489-2501. ⟨10.1109/TSP.2022.3172619⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; Adaptive importance sampling (AIS) methods are increasingly used for the approximation of distributions and related intractable integrals in the context of Bayesian inference. Population Monte Carlo (PMC) algorithms are a subclass of AIS methods, widely used due to their ease in the adaptation. In this paper, we propose a novel algorithm that exploits the benefits of the PMC framework and includes more efficient adaptive mechanisms, exploiting geometric information of the target distribution. In particular, the novel algorithm adapts the location and scale parameters of a set of importance densities (proposals). At each iteration, the location parameters are adapted by combining a versatile resampling strategy (i.e., using the information of previous weighted samples) with an advanced optimization-based scheme. Local second-order information of the target distribution is incorporated through a preconditioning matrix acting as a scaling metric onto a gradient direction. A damped Newton approach is adopted to ensure robustness of the scheme. The resulting metric is also used to update the scale parameters of the proposals. We discuss several key theoretical foundations for the proposed approach. Finally, we show the successful performance of the proposed method in three numerical examples, involving challenging distributions.

Details

Language :
English
ISSN :
1053587X
Database :
OpenAIRE
Journal :
IEEE Transactions on Signal Processing, IEEE Transactions on Signal Processing, 2022, 70, pp.2489-2501. ⟨10.1109/TSP.2022.3172619⟩
Accession number :
edsair.doi.dedup.....41015706065239fe4c49a551e5556cf7
Full Text :
https://doi.org/10.1109/TSP.2022.3172619⟩