Back to Search
Start Over
Quantification of β-Cell Mass in Intramuscular Islet Grafts Using Radiolabeled Exendin-4
- Source :
- Transplantation Direct
- Publication Year :
- 2016
- Publisher :
- Lippincott Williams & Wilkins, 2016.
-
Abstract
- Islet transplantation is a possible curative treatment for type 1 diabetes (T1D). Currently the liver dominates as implantation site, despite the many challenges encountered at this site.Acute hypoxia in islets transplanted to muscle and omentum, two possible alternative sites, was prevailing. However, it was rapidly reversed at both implantation sites, in contrast to when islets were transplanted intraportally. At the intramuscular site hypoxia was further relieved by co-transplantation of an oxygen carrier, polymerized hemoglobin, which also improved the functional outcome. The complement system was activated after islet transplantation to muscle, but did not hamper graft function.Both mouse and human islets transplanted to omentum become well re-vascularized and have a functional blood flow and oxygenation comparable with that of endogenous islets. Animals transplanted with islets to the omentum had a superior graft function compared with animals receiving intraportal islet grafts.Alloxan-diabetic animals were cured with a low number of islets both when the islets were implanted in the omentum and muscle. The islet grafts responded adequately to both glucose and insulin and displayed a favorable mRNA gene expression profile.A challenge in diabetes research and in islet transplantation is that there are no established techniques for quantifying beta-cell mass in vivo. By using radiolabeled Exendin-4, a GLP-1 receptor agonist, beta-cell mass after transplantation to muscle of mice was quantified. The results may well be translated to the clinical setting.By comparing the pancreatic accumulation of [11C]5-hydroxy tryptophan ([11C]5-HTP) as detected by positron emission tomography (PET) in T1D patients with that of healthy controls, a 66% decrease was observed. This may in fact represent the loss of beta-cells, taking into account that other cells within the islets of Langerhans are largely unaffected in T1D. In conclusion, the data presented support the use of alternative implantation sites for islet transplantation. In addition to improving the functional outcome this may enable more transplantations since the number of transplanted islets may be reduced. The techniques investigated for quantifying transplanted and endogenous beta-cell mass may greatly improve our knowledge of the pathophysiology of T1D and become a valuable tool for evaluation of beta-cell mass.
- Subjects :
- 0301 basic medicine
medicine.medical_specialty
endocrine system
endocrine system diseases
Cell- och molekylärbiologi
medicine.medical_treatment
030209 endocrinology & metabolism
03 medical and health sciences
0302 clinical medicine
In vivo
Internal medicine
Diabetes mellitus
exendin-4
medicine
Islet transplantation
Receptor
Pancreas and Islet Transplantation
Transplantation
Type 1 diabetes
geography
geography.geographical_feature_category
business.industry
Insulin
Hypoxia (medical)
medicine.disease
Islet
surgical procedures, operative
030104 developmental biology
Endocrinology
beta-cell mass
Lutetium-177
medicine.symptom
business
Cell and Molecular Biology
Subjects
Details
- Language :
- English
- ISSN :
- 23738731
- Volume :
- 2
- Issue :
- 8
- Database :
- OpenAIRE
- Journal :
- Transplantation Direct
- Accession number :
- edsair.doi.dedup.....409f61dbbd1b5d394ea0ee4936a8a810