Back to Search Start Over

Diffusion from convection

Authors :
Marko Medenjak
Jacopo De Nardis
Takato Yoshimura
institut de Physique Théorique Philippe Meyer (IPM)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Source :
SciPost Physics, Vol 9, Iss 5, p 075 (2020), SciPost Phys., SciPost Phys., 2020, 9, pp.075. ⟨10.21468/SciPostPhys.9.5.075⟩
Publication Year :
2020
Publisher :
SciPost, 2020.

Abstract

We introduce non-trivial contributions to diffusion constant in generic many-body systems arising from quadratic fluctuations of ballistically propagating, i.e. convective, modes. Our result is obtained by expanding the current operator in the vicinity of equilibrium states in terms of powers of local and quasi-local conserved quantities. We show that only the second-order terms in this expansion carry a finite contribution to diffusive spreading. Our formalism implies that whenever there are at least two coupled modes with degenerate group velocities, the system behaves super-diffusively, in accordance with the non-linear fluctuating hydrodynamics theory. Finally, we show that our expression saturates the exact diffusion constants in quantum and classical interacting integrable systems, providing a general framework to derive these expressions.<br />Comment: 26 pages, 1 figure

Details

Language :
English
ISSN :
25424653
Volume :
9
Issue :
5
Database :
OpenAIRE
Journal :
SciPost Physics
Accession number :
edsair.doi.dedup.....405e6ea8cecf5c608b50a0639612487a
Full Text :
https://doi.org/10.21468/SciPostPhys.9.5.075⟩