Back to Search
Start Over
Practical geospatial and sociodemographic predictors of human mobility
- Source :
- Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021), Scientific Reports
- Publication Year :
- 2021
-
Abstract
- Understanding seasonal human mobility at subnational scales has important implications across sciences, from urban planning efforts to disease modelling and control. Assessing how, when, and where populations move over the course of the year, however, requires spatially and temporally resolved datasets spanning large periods of time, which can be rare, contain sensitive information, or may be proprietary. Here, we aim to explore how a set of broadly available covariates can describe typical seasonal subnational mobility in Kenya pre-COVID-19, therefore enabling better modelling of seasonal mobility across low- and middle-income country (LMIC) settings in non-pandemic settings. To do this, we used the Google Aggregated Mobility Research Dataset, containing anonymized mobility flows aggregated over users who have turned on the Location History setting, which is off by default. We combined this with socioeconomic and geospatial covariates from 2018 to 2019 to quantify seasonal changes in domestic and international mobility patterns across years. We undertook a spatiotemporal analysis within a Bayesian framework to identify relevant geospatial and socioeconomic covariates explaining human movement patterns, while accounting for spatial and temporal autocorrelations. Typical pre-pandemic mobility patterns in Kenya mostly consisted of shorter, within-county trips, followed by longer domestic travel between counties and international travel, which is important in establishing how mobility patterns changed post-pandemic. Mobility peaked in August and December, closely corresponding to school holiday seasons, which was found to be an important predictor in our model. We further found that socioeconomic variables including urbanicity, poverty, and female education strongly explained mobility patterns, in addition to geospatial covariates such as accessibility to major population centres and temperature. These findings derived from novel data sources elucidate broad spatiotemporal patterns of how populations move within and beyond Kenya, and can be easily generalized to other LMIC settings before the COVID-19 pandemic. Understanding such pre-pandemic mobility patterns provides a crucial baseline to interpret both how these patterns have changed as a result of the pandemic, as well as whether human mobility patterns have been permanently altered once the pandemic subsides. Our findings outline key correlates of mobility using broadly available covariates, alleviating the data bottlenecks of highly sensitive and proprietary mobile phone datasets, which many researchers do not have access to. These results further provide novel insight on monitoring mobility proxies in the context of disease surveillance and control efforts through LMIC settings.
- Subjects :
- 0301 basic medicine
Geospatial analysis
Geographic information system
Science
Population Dynamics
Population
Context (language use)
computer.software_genre
Article
03 medical and health sciences
Spatio-Temporal Analysis
0302 clinical medicine
Regional science
Humans
030212 general & internal medicine
Baseline (configuration management)
education
Socioeconomic status
Travel
Disease surveillance
education.field_of_study
Models, Statistical
Multidisciplinary
Poverty
business.industry
Kenya
Environmental social sciences
030104 developmental biology
Geography
Socioeconomic Factors
Risk factors
Geographic Information Systems
Medicine
Seasons
business
computer
Cell Phone
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021), Scientific Reports
- Accession number :
- edsair.doi.dedup.....4050702ce2f8dc4cef2f78d490eaef4c