Back to Search Start Over

Structure and inhibition of Cryptococcus neoformans sterylglucosidase to develop antifungal agents

Authors :
Maurizio Del Poeta
Michael V. Airola
Jinwoo Kim
Timothy Clement
Reece M. Hoffmann
Robert C. Rizzo
John E. Burke
Iwao Ojima
Adam Taouil
Nivea Pereira de Sa
Source :
Nature Communications, Vol 12, Iss 1, Pp 1-12 (2021), Nature Communications
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Pathogenic fungi exhibit a heavy burden on medical care and new therapies are needed. Here, we develop the fungal specific enzyme sterylglucosidase 1 (Sgl1) as a therapeutic target. Sgl1 converts the immunomodulatory glycolipid ergosterol 3β-D-glucoside to ergosterol and glucose. Previously, we found that genetic deletion of Sgl1 in the pathogenic fungus Cryptococcus neoformans (Cn) results in ergosterol 3β-D-glucoside accumulation, renders Cn non-pathogenic, and immunizes mice against secondary infections by wild-type Cn, even in condition of CD4+ T cell deficiency. Here, we disclose two distinct chemical classes that inhibit Sgl1 function in vitro and in Cn cells. Pharmacological inhibition of Sgl1 phenocopies a growth defect of the Cn Δsgl1 mutant and prevents dissemination of wild-type Cn to the brain in a mouse model of infection. Crystal structures of Sgl1 alone and with inhibitors explain Sgl1’s substrate specificity and enable the rational design of antifungal agents targeting Sgl1.<br />Sterylglucosidase 1 (Sgl1) is a virulence factor in Cryptococcus neoformans that modulates fungal pathogenesis and host response. Here, the authors characterize Sgl1 structurally, identify Sgl1 inhibitors, and demonstrate Sgl1 inhibition has efficacy in mouse models of infection.

Details

Language :
English
ISSN :
20411723
Volume :
12
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....404e90d802e9350753d618e8f290d914