Back to Search Start Over

Cyclic loading effects on craniofacial strain and sutural growth in pigs

Authors :
Susan W. Herring
Shean Han Soh
Katherine L. Rafferty
Source :
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics. 154(2)
Publication Year :
2017

Abstract

Introduction Current craniofacial growth modification devices use static forces, but cyclic forces are believed by some to be more effective. The latter have not been evaluated in large animal models, and it is not known how such forces are transmitted to distant parts of the skull. In this study, we aimed to (1) develop a portable loading system capable of delivering reliable cyclic loads to the porcine nasofrontal suture (NFS), (2) explore strain transmission to distant sutures, and (3) characterize the sutural growth effects in a small pilot study. Methods After we validated the device, cyclic (2.5 Hz) tensile loads were applied unilaterally to the NFS of 6 abattoir pig heads, with strain gauges on multiple sutures. Similar loading was applied to 3-month-old live pigs (Sus scrofa, n = 4 and 1 sham) 30 minutes per day for 5 days. These animals received fluorescent markers of mineralization on loading days 1 and 3. Suture strains were recorded on day 5. Histomorphometric analysis quantified suture width and mineral apposition rate. Results A wearable loading system was developed to produce an average of +900 microstrain at the targeted NFS. Substantial strains were seen at the contralateral NFS and midline sutures, but bone strains were low. Strain patterns were similar ex vivo and in vivo, with the latter generally having higher magnitudes. Preliminary evidence demonstrates wider sutures with higher mineral apposition rates in the loaded sutures. Conclusions Daily spurts of cyclic load caused sutural strain throughout the skull. This regimen most likely enhances sutural growth and may be therapeutically useful.

Details

ISSN :
10976752
Volume :
154
Issue :
2
Database :
OpenAIRE
Journal :
American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics
Accession number :
edsair.doi.dedup.....40346e8233f7d967ef97ccdcbbb0724d