Back to Search Start Over

Rigorous light-scattering simulations of nanophase iron space-weathering effects on reflectance spectra of olivine grains

Authors :
Julia Martikainen
Karri Muinonen
Antti Penttilä
Johannes Markkanen
Timo Väisänen
Gorden Videen
Tomas Kohout
Department of Physics
Particle Physics and Astrophysics
Planetary-system research
Department of Geosciences and Geography
Geology and Geophysics
Source :
Icarus. 345:113727
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

We present a multi-scale light-scattering model that is capable of simulating the reflectance spectra of a regolith layer. In particular, the model can be applied to a case where the regolith grains have varying amounts of nanophase inclusions due to space weathering of the material. As different simulation tools are employed for different size scales of the target geometry (roughly, nano-, micro-, and millimeter scales), the particle size effects, the surface reflections, and the volume scattering can all be properly accounted for. Our results with olivine grains and nanophase iron inclusions verify the role of the nanoinclusions in the reflectance spectra of space-weathered materials. Together with the simulation results, we give simplified explanations for the space-weathering effects based on light scattering, namely the decrease of albedo, the general increase of the red spectral slope, and the dampening of the spectral bands. We also consider the so-called ultraviolet bluing effect, and show how the change in the spectral slope over the ultraviolet-visual wavelengths is due to the decrease of reflectance in the visual wavelengths rather than the increase of reflectance in the ultraviolet part.

Details

ISSN :
00191035
Volume :
345
Database :
OpenAIRE
Journal :
Icarus
Accession number :
edsair.doi.dedup.....4031df7a38e350079929a74759b95d70
Full Text :
https://doi.org/10.1016/j.icarus.2020.113727