Back to Search Start Over

Temporal control of Wnt signaling is required for habenular neuron diversity and brain asymmetry

Authors :
Enrico Moro
Luca Guglielmi
Francesco Argenton
Anja Bühler
Lucia Poggi
Matthias Carl
Source :
Development. 147
Publication Year :
2020
Publisher :
The Company of Biologists, 2020.

Abstract

Precise temporal coordination of signaling processes is pivotal for cellular differentiation during embryonic development. A vast number of secreted molecules are produced and released by cells and tissues, and travel in the extracellular space. Whether they induce a signaling pathway and instruct cell fate, however, depends on a complex network of regulatory mechanisms, which are often not well understood. The conserved bilateral left-right asymmetrically formed habenulae of the zebrafish are an excellent model for investigating how signaling control facilitates the generation of defined neuronal populations. Wnt signaling is required for habenular neuron type specification, asymmetry and axonal connectivity. The temporal regulation of this pathway and the players involved have, however, remained unclear. We find that tightly regulated temporal restriction of Wnt signaling activity in habenular precursor cells is crucial for the diversity and asymmetry of habenular neuron populations. We suggest a feedback mechanism whereby the tumor suppressor Wnt inhibitory factor Wif1 controls the Wnt dynamics in the environment of habenular precursor cells. This mechanism might be common to other cell types, including tumor cells.

Details

ISSN :
14779129 and 09501991
Volume :
147
Database :
OpenAIRE
Journal :
Development
Accession number :
edsair.doi.dedup.....400f0c1c5a16553c3112c7e3d9110b13
Full Text :
https://doi.org/10.1242/dev.182865