Back to Search Start Over

A three phase optimization method for precopy based VM live migration

Authors :
Sangeeta Sharma
Meenu Chawla
Source :
SpringerPlus
Publication Year :
2016

Abstract

Virtual machine live migration is a method of moving virtual machine across hosts within a virtualized datacenter. It provides significant benefits for administrator to manage datacenter efficiently. It reduces service interruption by transferring the virtual machine without stopping at source. Transfer of large number of virtual machine memory pages results in long migration time as well as downtime, which also affects the overall system performance. This situation becomes unbearable when migration takes place over slower network or a long distance migration within a cloud. In this paper, precopy based virtual machine live migration method is thoroughly analyzed to trace out the issues responsible for its performance drops. In order to address these issues, this paper proposes three phase optimization (TPO) method. It works in three phases as follows: (i) reduce the transfer of memory pages in first phase, (ii) reduce the transfer of duplicate pages by classifying frequently and non-frequently updated pages, and (iii) reduce the data sent in last iteration of migration by applying the simple RLE compression technique. As a result, each phase significantly reduces total pages transferred, total migration time and downtime respectively. The proposed TPO method is evaluated using different representative workloads on a Xen virtualized environment. Experimental results show that TPO method reduces total pages transferred by 71 %, total migration time by 70 %, downtime by 3 % for higher workload, and it does not impose significant overhead as compared to traditional precopy method. Comparison of TPO method with other methods is also done for supporting and showing its effectiveness. TPO method and precopy methods are also tested at different number of iterations. The TPO method gives better performance even with less number of iterations.

Details

ISSN :
21931801
Volume :
5
Issue :
1
Database :
OpenAIRE
Journal :
SpringerPlus
Accession number :
edsair.doi.dedup.....3ff754d57116071a4a45920dcdef6feb