Back to Search
Start Over
Peroxisome Deficiency Dysregulates Fatty Acid Oxidization and Exacerbates Lipotoxicity in β Cells
- Source :
- Oxidative Medicine and Cellular Longevity, Vol 2021 (2021), Oxidative Medicine and Cellular Longevity
- Publication Year :
- 2021
- Publisher :
- Hindawi, 2021.
-
Abstract
- An adverse intrauterine environment impairs the development of pancreatic islets in the fetus and leads to insufficient β cell mass and β cell dysfunction. We previously reported that Pex14, a peroxin protein involved in the biogenesis and degradation of peroxisomes, is markedly reduced in the pancreas of an intrauterine growth restriction fetus and last into adulthood. Peroxisomes function in a wide range of metabolic processes including fatty acid oxidization, ROS detoxification, and anti-inflammatory responses. To elucidate the impact of downregulation of the Pex14 gene on β cell, Pex14 was knocked down by siRNA in INS-1 cells. Pex14 knockdown disturbed peroxisomal biogenesis and dysregulated fatty acid metabolism and lipid storage capability, thereby increased ROS level and blunted insulin secretion. Moreover, Pex14 knockdown upregulated inflammation factors and regulators of endoplasmic reticulum stress. The lipotoxicity of fatty acid (including palmitic acid and linoleic acid) in β cells was exacerbated by knockdown of Pex14, as indicated by H2O2 accumulation and increased programmed cell death. The present results demonstrate the vital role of Pex14 in maintaining normal peroxisome function and β cell viability and highlight the importance of a functional peroxisomal metabolism for the detoxification of excess FAs in β cells.
- Subjects :
- Aging
Article Subject
Linoleic acid
Apoptosis
Peroxin
Transfection
Biochemistry
chemistry.chemical_compound
Downregulation and upregulation
Peroxisomes
medicine
Animals
Humans
chemistry.chemical_classification
B-Lymphocytes
Fetal Growth Retardation
Fatty acid metabolism
QH573-671
Chemistry
Pancreatic islets
Membrane Proteins
Fatty acid
Cell Biology
General Medicine
Peroxisome
Lipid Metabolism
Rats
Cell biology
Repressor Proteins
medicine.anatomical_structure
Lipotoxicity
Cytology
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 19420900
- Database :
- OpenAIRE
- Journal :
- Oxidative Medicine and Cellular Longevity
- Accession number :
- edsair.doi.dedup.....3ff3010be202b47699f26a661de10915
- Full Text :
- https://doi.org/10.1155/2021/7726058