Back to Search Start Over

Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature

Authors :
Laurent Marsac
Jérôme Gateau
Mathias Fink
Mickael Tanter
Jean-François Aubry
Mathieu Pernot
Physique des ondes pour la médecine
Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Institut Langevin - Ondes et Images (UMR7587) (IL)
Sorbonne Université (SU)-Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Paris (UP)-Centre National de la Recherche Scientifique (CNRS)
Supersonic imagine
Supersonic Imagine
Gateau, Jérôme
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
IEEE Transactions on Biomedical Engineering, IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2010, 57 (1), pp.134-44. ⟨10.1109/TBME.2009.2031816⟩, IEEE Transactions on Biomedical Engineering, 2010, 57 (1), pp.134-44. ⟨10.1109/TBME.2009.2031816⟩
Publication Year :
2009
Publisher :
Institute Of Electrical And Electronics Engineers, 2009.

Abstract

International audience; Brain treatment through the skull with high-intensity focused ultrasound can be achieved with multichannel arrays and adaptive focusing techniques such as time reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from computed tomography images. This noninvasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97 +/- 1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step-by-step bubble generation, the electronic steering capabilities of the array through the skull were improved.

Details

Language :
English
ISSN :
00189294
Database :
OpenAIRE
Journal :
IEEE Transactions on Biomedical Engineering, IEEE Transactions on Biomedical Engineering, Institute of Electrical and Electronics Engineers, 2010, 57 (1), pp.134-44. ⟨10.1109/TBME.2009.2031816⟩, IEEE Transactions on Biomedical Engineering, 2010, 57 (1), pp.134-44. ⟨10.1109/TBME.2009.2031816⟩
Accession number :
edsair.doi.dedup.....3fec373f1f3370689a202cb489775fac
Full Text :
https://doi.org/10.1109/TBME.2009.2031816⟩