Back to Search Start Over

Martian water ice clouds during the 2018 global dust storm as observed by the ACS-MIR channel onboard the Trace Gas Orbiter

Authors :
Aurélien Stcherbinine
Anna Fedorova
Andrew Patrakeev
Franck Montmessin
Alexander Trokhimovskiy
Oleg Korablev
Lucio Baggio
Alexei Shakun
Michael J. Wolff
Gaetan Lacombe
Mathieu Vincendon
PLANETO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
Institut d'astrophysique spatiale (IAS)
Université Paris-Sud - Paris 11 (UP11)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Space Science Institute [Boulder] (SSI)
Space Research Institute of the Russian Academy of Sciences (IKI)
Russian Academy of Sciences [Moscow] (RAS)
IMPEC - LATMOS
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Geophysical Research. Planets, Journal of Geophysical Research. Planets, Wiley-Blackwell, 2020, 125 (3), pp.e2019JE006300. ⟨10.1029/2019JE006300⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

The Atmospheric Chemistry Suite (ACS) instrument onboard the ExoMars Trace Gas Orbiter (TGO) ESA-Roscosmos mission began science operations in March 2018. ACS Mid InfraRed (MIR) channel notably provides solar occultation observations of the martian atmosphere in the 2.3 - 4.2 $\mu$m spectral range. Here we use these observations to characterize water ice clouds before and during the MY 34 Global Dust Storm (GDS). We developed a method to detect water ice clouds with mean particle size $\leq$ 2 $\mu$m, and applied it to observations gathered between $L_s=165^\circ$ and $L_s=243^\circ$. We observe a shift in water ice clouds maximum altitudes from about 60 km before the GDS to above 90 km during the storm. These very high altitude, small-sized ($r_\mathrm{eff} \leq 0.3$ $\mu$m) water ice clouds are more frequent during MY34 compared to non-GDS years at the same season. Particle size frequently decreases with altitude, both locally within a given profile and globally in the whole dataset. We observe that the maximum altitude at which a given size is observed can increase during the GDS by several tens of km for certain sizes. We notably notice some large water ice particles ($r_\mathrm{eff}\geq1.5$ $\mu$m) at surprisingly high altitudes during the GDS (50 - 70 km). These results suggest that GDS can significantly impact the formation and properties of high altitude water ice clouds as compared to the usual perihelion dust activity.

Details

Language :
English
ISSN :
21699097 and 21699100
Database :
OpenAIRE
Journal :
Journal of Geophysical Research. Planets, Journal of Geophysical Research. Planets, Wiley-Blackwell, 2020, 125 (3), pp.e2019JE006300. ⟨10.1029/2019JE006300⟩
Accession number :
edsair.doi.dedup.....3fcb3364f009901a22d0d743db3842f6