Back to Search Start Over

On temporally completely monotone functions for Markov processes

Authors :
Francis Hirsch
Marc Yor
Laboratoire de Probabilités et Modèles Aléatoires (LPMA)
Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
Source :
Probability Surveys, Probability Surveys, Institute of Mathematical Statistics (IMS), 2012, 9, pp.253-286. ⟨10.1214/11-PS179⟩, Probab. Surveys 9 (2012), 253-286, Probability Surveys, 2012, 9, pp.253-286. ⟨10.1214/11-PS179⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

Any negative moment of an increasing Lamperti process(Yt,t≥0) is a completely monotone function of t. This property enticed us to study systematically, for a given Markov process (Yt,t≥0), the functions f such that the expectation of f(Yt) is a completely monotone function of t. We call these functions temporally completely monotone (for Y). Our description of these functions is deduced from the analysis made by Ben Saad and Janßen, in a general framework, of a dual notion, that of completely excessive measures. Finally, we illustrate our general description in the cases when Y is a Lévy process, a Bessel process, or an increasing Lamperti process.

Details

Language :
English
ISSN :
15495787
Database :
OpenAIRE
Journal :
Probability Surveys, Probability Surveys, Institute of Mathematical Statistics (IMS), 2012, 9, pp.253-286. ⟨10.1214/11-PS179⟩, Probab. Surveys 9 (2012), 253-286, Probability Surveys, 2012, 9, pp.253-286. ⟨10.1214/11-PS179⟩
Accession number :
edsair.doi.dedup.....3fa399fb885277960f4f8bdbd2bbb16f
Full Text :
https://doi.org/10.1214/11-PS179⟩