Back to Search Start Over

Schistosome W-linked genes inform temporal dynamics of sex chromosome evolution and suggest candidate for sex determination

Authors :
Beatriz Vicoso
Marwan Elkrewi
Mikhail A. Moldovan
Marion Picard
Institute of Science and Technology [Austria] (IST Austria)
Skolkovo Institute of Science and Technology [Moscow] (Skoltech)
Biologie intégrative des organismes marins (BIOM)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Observatoire océanologique de Banyuls (OOB)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Molecular Biology and Evolution, Molecular Biology and Evolution, Oxford University Press (OUP), 2021, ⟨10.1093/molbev/msab178⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

Schistosomes, the human parasites responsible for snail fever, are female-heterogametic. Different parts of their ZW sex chromosomes have stopped recombining in distinct lineages, creating “evolutionary strata” of various ages. Although the Z-chromosome is well characterized at the genomic and molecular level, the W-chromosome has remained largely unstudied from an evolutionary perspective, as only a few W-linked genes have been detected outside of the model species Schistosoma mansoni. Here, we characterize the gene content and evolution of the W-chromosomes of S. mansoni and of the divergent species S. japonicum. We use a combined RNA/DNA k-mer based pipeline to assemble around 100 candidate W-specific transcripts in each of the species. About half of them map to known protein coding genes, the majority homologous to S. mansoni Z-linked genes. We perform an extended analysis of the evolutionary strata present in the two species (including characterizing a previously undetected young stratum in S. japonicum) to infer patterns of sequence and expression evolution of W-linked genes at different time points after recombination was lost. W-linked genes show evidence of degeneration, including high rates of protein evolution and reduced expression. Most are found in young lineage-specific strata, with only a few high expression ancestral W-genes remaining, consistent with the progressive erosion of nonrecombining regions. Among these, the splicing factor u2af2 stands out as a promising candidate for primary sex determination, opening new avenues for understanding the molecular basis of the reproductive biology of this group. Keywords: sex chromosomes, evolutionary strata, W-linked gene, sex determining gene, schistosome parasites.

Details

Language :
English
ISSN :
07374038 and 15371719
Database :
OpenAIRE
Journal :
Molecular Biology and Evolution, Molecular Biology and Evolution, Oxford University Press (OUP), 2021, ⟨10.1093/molbev/msab178⟩
Accession number :
edsair.doi.dedup.....3f97ac949981720cc1a13579afa0c19c