Back to Search
Start Over
X-ray spectroscopy and photometry of the long-period polar AI Tri with XMM-Newton
- Publication Year :
- 2010
- Publisher :
- arXiv, 2010.
-
Abstract
- Context. The energy balance of cataclysmic variables with strong magnetic fields is a central subject in understanding accretion processes on magnetic white dwarfs. With XMM-Newton, we perform a spectroscopic and photometric study of soft X-ray selected polars during their high states of accretion. Aims. On the basis of X-ray and optical observations of the magnetic cataclysmic variable AI Tri, we derive the properties of the spectral components, their flux contributions, and the physical structure of the accretion region in soft polars. Methods. We use multi-temperature approaches in our xspec modeling of the spectra to describe the physical conditions and the structures of the post-shock accretion flow and the accretion spot on the white-dwarf surface. In addition, we investigate the accretion geometry of the system by a timing analysis of the photometric data. Results. Flaring soft X-ray emission from the heated surface of the white dwarf dominates the X-ray flux during roughly 70% of the binary cycle. This component deviates from a single black body and can be described by a superimposition of mildly absorbed black bodies with a Gaussian temperature distribution. In addition, weaker hard X-ray emission is visible nearly all the time. The spectrum from the cooling post-shock accretion flow is most closely fitted by a combination of thermal plasma mekal models with temperature profiles adapted from prior stationary two-fluid hydrodynamic calculations. The soft X-ray light curves show a dip during the bright phase, which can be interpreted as self-absorption in the accretion stream. Phase-resolved spectral modeling supports the picture of one-pole accretion and self-eclipse. One of the optical light curves corresponds to an irregular mode of accretion. During a short XMM-Newton observation at the same epoch, the X-ray emission of the system is clearly dominated by the soft component.<br />Comment: A&A, in press; 11 pages, 9 figures, 3 tables
- Subjects :
- 010504 meteorology & atmospheric sciences
Astrophysics::High Energy Astrophysical Phenomena
Cataclysmic variable star
FOS: Physical sciences
Astrophysics
Astrophysics::Cosmology and Extragalactic Astrophysics
01 natural sciences
Spectral line
Photometry (optics)
0103 physical sciences
Astrophysics::Solar and Stellar Astrophysics
010303 astronomy & astrophysics
Astrophysics::Galaxy Astrophysics
Solar and Stellar Astrophysics (astro-ph.SR)
0105 earth and related environmental sciences
Physics
White dwarf
Astronomy and Astrophysics
Light curve
Accretion (astrophysics)
Magnetic field
Astrophysics - Solar and Stellar Astrophysics
Space and Planetary Science
Polar
Astrophysics::Earth and Planetary Astrophysics
novae
cataclysmic variables
stars
individual
AI Tri
X-rays
binaries
accretion
accretion disks
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....3f9169cc5ddfc6f54579c8611acb982c
- Full Text :
- https://doi.org/10.48550/arxiv.1004.1629