Back to Search Start Over

Empirical Risk Minimization with Relative Entropy Regularization: Optimality and Sensitivity Analysis

Authors :
Samir Perlaza
Gaetan Bisson
Iñaki Esnaola
Alain Jean-Marie
Stefano Rini
Network Engineering and Operations (NEO )
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire de Géométrie Algébrique et Applications à la Théorie de l'Information (GAATI)
Université de la Polynésie Française (UPF)
Department of Electrical and Computer Engineering [Princeton] (ECE)
Princeton University
Department of Automatic Control and Systems Engineering [ Sheffield] (ACSE)
University of Sheffield [Sheffield]
Department of Electrical and Computer Engineering [Taiwan]
National Chiao Tung University (NCTU)
IEEE
ANR-20-CE40-0013,MELODIA,Méthodes pour les variétés abéliennes de petite dimension(2020)
Source :
ISIT 2022-IEEE International Symposium on Information Theory, ISIT 2022-IEEE International Symposium on Information Theory, Jun 2022, Espoo, Finland. pp.684-689, ⟨10.1109/ISIT50566.2022.9834273⟩, HAL
Publication Year :
2022

Abstract

The optimality and sensitivity of the empirical risk minimization problem with relative entropy regularization (ERM-RER) are investigated for the case in which the reference is a sigma-finite measure instead of a probability measure. This generalization allows for a larger degree of flexibility in the incorporation of prior knowledge over the set of models. In this setting, the interplay of the regularization parameter, the reference measure, the risk function, and the empirical risk induced by the solution of the ERM-RER problem is characterized. This characterization yields necessary and sufficient conditions for the existence of a regularization parameter that achieves an arbitrarily small empirical risk with arbitrarily high probability. The sensitivity of the expected empirical risk to deviations from the solution of the ERM-RER problem is studied. The sensitivity is then used to provide upper and lower bounds on the expected empirical risk. Moreover, it is shown that the expectation of the sensitivity is upper bounded, up to a constant factor, by the square root of the lautum information between the models and the datasets.<br />In Proc. IEEE International Symposium on Information Theory (ISIT), Aalto, Finland, Jul., 2022

Details

Language :
English
Database :
OpenAIRE
Journal :
ISIT 2022-IEEE International Symposium on Information Theory, ISIT 2022-IEEE International Symposium on Information Theory, Jun 2022, Espoo, Finland. pp.684-689, ⟨10.1109/ISIT50566.2022.9834273⟩, HAL
Accession number :
edsair.doi.dedup.....3f8398b30ccb247d942f26918f37c914
Full Text :
https://doi.org/10.1109/ISIT50566.2022.9834273⟩