Back to Search Start Over

Nanofluidic Redox Cycling Amplification for the Selective Detection of Catechol

Authors :
Serge G. Lemay
Bernhard Wolfrum
Marcel A.G. Zevenbergen
Source :
Analytical Chemistry. 80:972-977
Publication Year :
2008
Publisher :
American Chemical Society (ACS), 2008.

Abstract

We have developed a chip-based nanofluidic device to amplify the electrochemical signal of catechols by orders of magnitude. The amplification is based on rapid redox cycling between plane parallel electrodes inside a nanochannel. We show that it is possible to monitor the signal of only a few hundred molecules residing in the active area of the nanofluidic sensor. Furthermore, due to the nanochannel design, the sensor is immune to interference by molecules undergoing irreversible redox reactions. We demonstrate the selectivity of the device by detecting catechol in the presence of ascorbic acid, whose oxidized form is only stable for a short time. The interference of ascorbic acid is usually a challenge in the detection of catecholamines in biological samples.

Details

ISSN :
15206882 and 00032700
Volume :
80
Database :
OpenAIRE
Journal :
Analytical Chemistry
Accession number :
edsair.doi.dedup.....3f78e4046ffa3b74d2107e3c1583ce66
Full Text :
https://doi.org/10.1021/ac7016647