Back to Search
Start Over
Human CksHs2 atomic structure: a role for its hexameric assembly in cell cycle control
- Source :
- Science (New York, N.Y.). 262(5132)
- Publication Year :
- 1993
-
Abstract
- The cell cycle regulatory protein CksHs2 binds to the catalytic subunit of the cyclin-dependent kinases (Cdk9s) and is essential for their biological function. The crystal structure of the protein was determined at 2.1 A resolution. The CksHs2 structure is an unexpected hexamer formed by the symmetric assembly of three interlocked dimers into an unusual 12-stranded beta barrel fold that may represent a prototype for this class of protein structures. Sequence-conserved regions form the unusual beta strand exchange between the subunits of the dimer, and the metal and anion binding sites associated with the hexamer assembly. The two other sequence-conserved regions line a 12 A diameter tunnel through the beta barrel and form the six exposed, charged helix pairs. Six kinase subunits can be modeled to bind the assembled hexamer without collision, and therefore this CksHs2 hexamer may participate in cell cycle control by acting as the hub for Cdk multimerization in vivo.
- Subjects :
- Models, Molecular
Protein Folding
Stereochemistry
Macromolecular Substances
Dimer
Protein subunit
Molecular Sequence Data
Beta sheet
Cell Cycle Proteins
Random hexamer
Crystallography, X-Ray
Protein Structure, Secondary
chemistry.chemical_compound
Protein structure
Cyclin-dependent kinase
CDC2-CDC28 Kinases
Computer Graphics
Humans
Amino Acid Sequence
Anion binding
Conserved Sequence
Multidisciplinary
Binding Sites
biology
Cell Cycle
Beta barrel
chemistry
biology.protein
Carrier Proteins
Protein Kinases
Sequence Alignment
Subjects
Details
- ISSN :
- 00368075
- Volume :
- 262
- Issue :
- 5132
- Database :
- OpenAIRE
- Journal :
- Science (New York, N.Y.)
- Accession number :
- edsair.doi.dedup.....3ee7a6ad3772025810a66f4a6cee45e7